Proving a New Refinery Design Using Reliability Throughput Modelling

Damien Willans
SSR Engineering Pty Ltd
The following presentation was delivered at the:

International Applied Reliability Symposium, North America
June 7 - 9, 2011: San Diego, California
http://www.ARSymposium.org/2011/

The International Applied Reliability Symposium (ARS) is intended to be a forum for reliability and maintainability practitioners within industry and government to discuss their success stories and lessons learned regarding the application of reliability techniques to meet real world challenges. Each year, the ARS issues an open "Call for Presentations" at http://www.arsymposium.org/present.htm and the presentations delivered at the Symposium are selected on the basis of the presentation proposals received.

Although the ARS may edit the presentation materials as needed to make them ready to print, the content of the presentation is solely the responsibility of the author. Publication of these presentation materials in the ARS Proceedings does not imply that the information and methods described in the presentation have been verified or endorsed by the ARS and/or its organizers.

The publication of these materials in the ARS presentation format is Copyright © 2011 by the ARS, All Rights Reserved.
1.0 Introduction

- Damien Willans
- Director, SSR Engineering Pty Ltd
- Incorporated in 2009

Key Highlights:
- Specialize in reliability modeling
- 15 to 20 years minerals processing design backgrounds for both company partners
- Previously in-house reliability modelling, now consulting

Modelling software
- SSR uses a flexible modeling platform - Goldsim
- Goldsim is a numerical analysis platform with a wide range of applications including engineering systems reliability.
Agenda

- 1.0 Introduction 5 min
- 2.0 Modeling new projects 5 min
- 3.0 Case study - New project outline 5 min
- 4.0 Project setup – Client scope, data, documents 10 min
- 5.0 Producing the models 10 min
- 6.0 Model outputs and issues 5 min
- 7.0 Summary 10 min
- Questions 10 min
2.0 Modelling new projects

- Current Scenario
 - Resource demand and industry is booming.
 - Project scales have generated larger scale specialized engineering providers.
 - The larger they are, the harder it is to fully integrate all stages of project design and operations.
 - The path from resource ownership to fully functioning and integrated mine/processing facilities can be lengthy, expensive and rarely seamless.
2.0 Modelling new projects

- Engineering – Construction - Operation
 - Typically in Australia the major resource companies engage large engineering consultants to execute plant design.
 - The key criteria is project cost, combined with a performance guarantee.
 - Final design and construction is often handed off to large construction companies.
 - Plant is handed over to owner/operator for operations and maintenance.

Key point: The facility owner has limited opportunity to prove and optimise the design – particularly in the area of operations and maintenance effects.
3.0 Case study – New project outline

- Project outline
 - A relatively “new” player (in Alumina but not in resources).
 - Massive mine to raw product processing and port development.
 - Compelled to use publically available technology and engineering.
 - Utilizing a large engineering team with wide range of experience and design preferences.
3.0 Case study – New project outline

- Design process
 - Process flowsheet designed with final production number as starting point.
 - An assumed “operating” factor was then applied to get:
 - Final flowsheet data – this was then used to size pumps, filters, piping etc.
 - Entire success of the plant process is dependent on the plant equipment meeting the assumed operating factor, not just initially but over time…
4.0 Project setup – scope, data, documents

- Project definition stage is VERY important.
- 3 major requirements at model definition stage:
 - Client requirements
 - Data sourcing
 - Documentation and review
4.0 Project setup – scope, data, documents

● 4.1 Client requirements

 ▪ Initial requirement was a reliability “model” which had different meanings to each person.
 ▪ My job was to show the potential outcomes from the models and how they could use them.
 ▪ Significant demonstrations of the program (Goldsim) and explaining numerical analysis.
 ▪ All expectations from owners, design engineers and operating partners were documented and updated during the project duration.
4.0 Project setup – scope, data, documents

4.2 Data sourcing

- Very critical to find/collate all available data and get agreement on its use.
- Equally critical to assemble all of the data into a single source document for review by the client early in the modelling process.
- For this project we required process flow diagrams (PFD’s), equipment lists, area process descriptions, initial maintenance assumptions and failure data.
- This (greenfield) project required some existing plant data from the operating partner.
4.0 Project setup – scope, data, documents

- Essential data comes together for 2 very important reasons:
 1. Allows alignment of data and highlights gaps.
 2. Eliminates uncertainty for those who only review the outcomes after modelling project essential completion.
4.3 Project documentation

- Design criteria documents were then compiled for each process area.
- These contained ALL relevant data to be used in each model (i.e., in one specific location).
- Criteria generated significant “discussions” regarding some assumptions – a great tool.
- Invaluable for project final model review stages – when input data is often a point of contention (particularly for new players).
5.0 Producing the models

● Overview

- 5.1 Starting with a plan
- 5.2 Building the models
- 5.3 Developing models the client can use
- 5.4 Building the combined (full-plant) model
5.0 Producing the models

5.1 Start with a plan

- Start by breaking down total plant by areas.
- Build a schedule for the overall project.
- Create the modelling schedule based on model development stages – preliminary, area verification, combined model stage.
- Update progress each week.
5.0 Producing the models

- Build a schedule for the overall project.

<table>
<thead>
<tr>
<th>Project Schedule</th>
<th>Wk 1</th>
<th>Wk 2</th>
<th>Wk 3</th>
<th>Wk 4</th>
<th>Wk 5</th>
<th>Wk 6</th>
<th>Wk 7</th>
<th>Wk 8</th>
<th>Wk 9</th>
<th>Wk 10</th>
<th>Wk 11</th>
<th>Wk 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1:</td>
<td></td>
</tr>
<tr>
<td>Proj Kickoff / Conf. of data</td>
<td>M</td>
<td>T</td>
<td>M</td>
<td>T</td>
<td>F</td>
<td>S</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>F</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Data handover</td>
<td></td>
</tr>
<tr>
<td>Design Criteria doc - IFR</td>
<td></td>
</tr>
<tr>
<td>Design Criteria doc - Approval</td>
<td></td>
</tr>
</tbody>
</table>

Stage 2: Prelim. model/verification												
Materials Handling	1											
Grinding	2											
Digestion	3											
Evaporation	4											
Mud Clarification	5											
Mud Washing	6											
Mud Disposal	7											
Liquor Filtration	8											
Heat Interchange area	9											
Precipitation	10											
Hydrate Classification	11											
Seed Preparation	12											
Product Washing	13											
Calcination	14											
Alumina Handling	15											

Stage 3: Combined plant model												
Assembly												
Check and run scenarios												
Final report & handover												
5.0 Producing the models

5.2 Building the models

- Start with a structure in mind.
- Inputs ➔ Model ➔ Outputs
- Input data includes:
 - Process criteria, flowrates
 - Equipment capacities (Nor / Max / Design)
 - Operating rules
 - Planned maintenance freq and durations
 - Unplanned stoppages (failure data)
5.0 Producing the models

- Goldsim model architecture is flexible…
5.0 Producing the models

- So consistent model structures are essential.
5.0 Producing the models

- Input data screen:
5.0 Producing the models

- Process flows:

![Diagram of process flows](image-url)
5.0 Producing the models

- Reliability/Equipment elements:

All elements are linked to upstream elements in order to operate. Final element (Product pump) is referenced by high level Mill element in order to allow go / no-go in the flow circuit.
5.0 Producing the models

- Calculated output screen:
5.3 Developing models the client can use

- Goldsim uses dashboards for client model interface.
- Line up inputs in design criteria exactly with model dashboards.
- Discuss resultant model outcomes face to face.
- Input/Output dashboards for this project included the Grinding area.
5.0 Producing the models

- Client model interface – model inputs:

![Diagram showing various maintenance schedules and flow inputs for a grinding mill circuit.](image-url)
5.0 Producing the models

- Client model interface – model outputs:

![GoldSim Pro - Grinding_mill_circuit for presentation](image)

- Grinding Circuit Outputs

 - Mill Cct #1 Flow Average (tph): 67.74
 - Mill Cct #2 Flow Average (tph): 67.47
 - Mill Cct #3 Flow Average (tph): 64.74
 - Total - Mill Cct Flow Average (tph): 99.98

 - Percent online time (typ):
 - 67.74
 - 67.47
 - 64.74
 - 99.98

- 4.82 mtonne
 - Grinding - Annual output (Ore + Liq)

- 4.82 mtonne
 - Grinding - Ideal Annual output (Ore + Liq)

- 2.85
 - Mills online (Avg)
5.4 Building the combined plant model
- Each area is built as a standalone model.
- Utilise standard input/output formats.
- Create a combined model by adding all process area models into one location.
- Combined model simply connects inputs and outputs to provide a continuous circuit.
- Important to re-evaluate operating and maintenance connections between areas (!!!)
5.0 Producing the models

- Combined model assembly:
5.0 Producing the models

- Combined model – Overall Outputs:
5.0 Producing the models

- Combined model – System/Equipment analysis:
5.0 Producing the models

- Combined model – Bulk equipment analysis:

<table>
<thead>
<tr>
<th>Element ID</th>
<th>Operational Availability</th>
<th>Inherent Availability</th>
<th>Reliability</th>
<th>Mean Time to Failure</th>
<th>Mean Time to Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill_System_1</td>
<td>0.934248</td>
<td>0.934778 0.935307</td>
<td>0.934248</td>
<td>0.934778 0.935307</td>
<td>N/A</td>
</tr>
<tr>
<td>M1_Apron_feeder</td>
<td>0.934247</td>
<td>0.934777 0.935307</td>
<td>0.99895</td>
<td>0.999021 0.999092</td>
<td>N/A</td>
</tr>
<tr>
<td>M1_Belt_Weigher</td>
<td>0.934248</td>
<td>0.934778 0.935307</td>
<td>0.99962</td>
<td>0.999571 0.999979</td>
<td>N/A</td>
</tr>
<tr>
<td>M1_Clyl_1</td>
<td>0.92041</td>
<td>0.920934 0.921458</td>
<td>0.991477</td>
<td>0.991555 0.991624</td>
<td>N/A</td>
</tr>
<tr>
<td>M1_Cyl_2</td>
<td>0.920412</td>
<td>0.920914 0.921415</td>
<td>0.99147</td>
<td>0.991626 0.991939</td>
<td>N/A</td>
</tr>
<tr>
<td>M1_Disch_Pump_1</td>
<td>0.928648</td>
<td>0.929171 0.929694</td>
<td>0.994148</td>
<td>0.994247 0.994347</td>
<td>N/A</td>
</tr>
<tr>
<td>M1_Disch_Pump_2</td>
<td>0.928696</td>
<td>0.929207 0.929718</td>
<td>0.994178</td>
<td>0.994247 0.994361</td>
<td>N/A</td>
</tr>
<tr>
<td>M1_disch_tank</td>
<td>0.934248</td>
<td>0.934778 0.935307</td>
<td>1</td>
<td>1 1</td>
<td>N/A</td>
</tr>
<tr>
<td>M1_Feed_Chute</td>
<td>0.934248</td>
<td>0.934778 0.935307</td>
<td>0.999357</td>
<td>0.999556 0.999757</td>
<td>N/A</td>
</tr>
<tr>
<td>M1_Mill_Assy</td>
<td>0.934242</td>
<td>0.934772 0.935303</td>
<td>0.990476</td>
<td>0.99099 0.991504</td>
<td>N/A</td>
</tr>
<tr>
<td>M1_Product_Pump</td>
<td>0.934248</td>
<td>0.934778 0.935037</td>
<td>0.994206</td>
<td>0.99429 0.994375</td>
<td>N/A</td>
</tr>
<tr>
<td>M1_Product_Tank</td>
<td>0.934248</td>
<td>0.934778 0.935037</td>
<td>1</td>
<td>1 1</td>
<td>N/A</td>
</tr>
<tr>
<td>Mill_System_2</td>
<td>0.934228</td>
<td>0.934774 0.935251</td>
<td>0.934228</td>
<td>0.93474 0.935251</td>
<td>N/A</td>
</tr>
<tr>
<td>M2_Apron_feeder</td>
<td>0.934228</td>
<td>0.934739 0.935251</td>
<td>0.99015</td>
<td>0.990005 0.99175</td>
<td>N/A</td>
</tr>
<tr>
<td>M2_Belt_Weigher</td>
<td>0.934228</td>
<td>0.934747 0.935251</td>
<td>0.99965</td>
<td>0.999667 0.999977</td>
<td>N/A</td>
</tr>
<tr>
<td>M2_Clyl_1</td>
<td>0.92048</td>
<td>0.92098 0.92148</td>
<td>0.991463</td>
<td>0.991536 0.99161</td>
<td>N/A</td>
</tr>
<tr>
<td>M2_Cyl_2</td>
<td>0.92045</td>
<td>0.920957 0.921463</td>
<td>0.991408</td>
<td>0.991566 0.991665</td>
<td>N/A</td>
</tr>
<tr>
<td>M2_Disch_Pump_1</td>
<td>0.928706</td>
<td>0.929205 0.929705</td>
<td>0.994201</td>
<td>0.994282 0.994363</td>
<td>N/A</td>
</tr>
<tr>
<td>M2_Disch_Pump_2</td>
<td>0.928632</td>
<td>0.929138 0.929644</td>
<td>0.994156</td>
<td>0.994235 0.994315</td>
<td>N/A</td>
</tr>
<tr>
<td>M2_disch_tank</td>
<td>0.934228</td>
<td>0.934747 0.935251</td>
<td>1</td>
<td>1 1</td>
<td>N/A</td>
</tr>
<tr>
<td>M2_Feed_Chute</td>
<td>0.934228</td>
<td>0.934747 0.935251</td>
<td>0.999339</td>
<td>0.999557 0.999754</td>
<td>N/A</td>
</tr>
<tr>
<td>M2_Mill_Assy</td>
<td>0.934223</td>
<td>0.934734 0.935246</td>
<td>0.99044</td>
<td>0.990887 0.991335</td>
<td>N/A</td>
</tr>
<tr>
<td>M2_Product_Pump</td>
<td>0.934228</td>
<td>0.934747 0.935251</td>
<td>0.99137</td>
<td>0.994224 0.994312</td>
<td>N/A</td>
</tr>
<tr>
<td>M2_Product_Tank</td>
<td>0.934228</td>
<td>0.934747 0.935251</td>
<td>1</td>
<td>1 1</td>
<td>N/A</td>
</tr>
<tr>
<td>Mill_System_3</td>
<td>0.934098</td>
<td>0.934553 0.935008</td>
<td>0.934098</td>
<td>0.934553 0.935008</td>
<td>N/A</td>
</tr>
</tbody>
</table>
6.0 Model Outputs and Issues

• 6.1 Project requirements
 ▪ Phased development – client is always confident of outcomes at each project milestone (no black box !!).
 ▪ Use agreed inputs via reviewed design criteria.
 ▪ Determine all model scenarios to be evaluated.
 ▪ Present findings with a wider audience in mind (visual comparisons rather than just numbers).
6.0 Model Outputs and Issues

- Multiple model scenario investigations:
 - S1 - Evaluate baseline operating and maintenance criteria using initial design.
 - Look for areas with largest production shortfall and identify causes (Ops / Mtce / Design?).
 - S2 - Examine initial design assumptions – redundancy.
6.0 Model Outputs and Issues

- Multiple model scenario investigations:
 - S3 - Case studies included minimum level of equipment (i.e., no spares) to show where they are really needed.
 - S4 – Ran area and combined models both with and without failure modes to show both sensitivity (to failures) and plant potential in ideal conditions.
6.0 Model Outputs and Issues

- Model Results – by Area – as designed:

![Graph showing Model Outputs and Issues]
6.0 Model Outputs and Issues

- Model Results – by Area – minimum asset case:

![Graph of Area Capacity](image-url)
6.0 Model Outputs and Issues

- Model Results – Combined Output:

Plant Alumina Capacity - Fall Data + No Fall Data - Equiv Alumina mtpa (10Yr dur)
7.0 Summary

- Case Study project outcomes
 - Clear definition and alignment of design data was achieved before detailed design process.
 - Proved the design engineer’s operating factor assumption was exceeded (for given criteria!).
 - Provided a statistical basis for the plant design capacity for the client’s project cost estimate.
7.0 Summary

- Case Study project outcomes
 - Also showed several process areas where value improvements could be investigated.
 - Client now has a tool to validate further maintenance strategy inputs vs. plant capacity.
7.0 Summary

- Capacity modelling vs. project stages
 - Early adoption (Feasibility/Study stage) – Capital savings through optimizing equipment capacities and redundancy.
 - During Design (Prelim/Basic engineering) – Value engineering processes, confirming effects of maintenance and operating strategies on adopted design.
7.0 Summary

- Capacity modelling vs. project stages
 - Detailed Engineering and construction – Use to refine and verify maintenance strategy development processes (e.g., RCM). Also provide initial resourcing estimates for labour, commodities (spares) etc.
 - After Startup – Verify model vs. plant outputs, then use for both capital and maintenance program validation.
7.0 Summary

- Value adding
 - Resourcing – Run the models to gauge resource requirements for varying strategies (labour, spares, commodities etc).
 - Energy – Energy use is time and condition related – so can be built into these models (e.g., pump efficiency vs. changeout freq).
 - Model company wide operational and mtce initiatives across multiple facility models before making the change (!).
Where to Get More Information

- Web links
 - www.ssr-eng.com
 - www.goldsim.com
- E-mail: damien@ssr-eng.com
- or: info@ssr-eng.com
Questions

Thank you for your attention 😊

Do you have any questions?