

A Dynamic Simulation Approach
to Reliability Modeling and Risk

Assessment Using GoldSim
White Paper

Visit us at www.goldsim.com

Contact us at software@goldsim.com

© 2017 GoldSim Technology Group LLC. All rights reserved.

Information in this document is subject to change without notice. This white paper is for informational purposes only. GOLDSIM TECHNOLOGY

GROUP LLC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this

document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form, by any means (electronic,

mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of GoldSim Technology Group

LLC.

GoldSim Technology Group LLC may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering

subject matter in this document. Except as expressly provided in any written license agreement from GoldSim Technology Group LLC, the

furnishing of this document does not give you the license to these patents, trademarks, copyrights, or other intellectual property.

GoldSim is a registered trademark of GoldSim Technology Group LLC in the United States and/or other countries. The names of actual

companies and products mentioned herein may be the trademarks of their respective owners.

http://www.goldsim.com/
mailto:software@goldsim.com

i

Table of Contents
Introduction .. 1

Purpose and Outline .. 2

How is GoldSim Different from Traditional Approaches? ... 3

Traditional Approaches to Reliability Modeling .. 3

Traditional Approaches to Probabilistic Risk Assessment for Engineered Systems 3

The GoldSim Approach to Reliability Modeling and Risk Assessment ... 4

Basic GoldSim Concepts ... 6

Simulation Concepts .. 6

What is GoldSim? .. 7

Running a Model ... 9

Displaying Basic Simulation Results .. 11

Modeling Events .. 14

Building Large, Hierarchical Models ... 14

Building Transparent, Well-Documented Models ... 16

Summary ... 17

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ .. 18

Modeling Simple Failures ... 18

Modeling Multiple Failure Modes .. 22

Modeling the Reliability of Systems ... 26

Serial Systems .. 26

Parallel Systems ... 31

k-out-of-n Redundancy .. 34

Combined Series-Parallel Systems and Other Complex Configurations ... 36

Modeling Repairs, Replacement and Preventive Maintenance ... 40

Modeling the Repair of Failure Modes ... 40

Modeling Replacement and Preventive Maintenance .. 43

Modeling Complex Interdependencies and Dynamically Changing Systems 44

Common Mode Failures ... 44

Responding to Evolving Operational Environments .. 45

Load Sharing Systems .. 46

Using Physically-Based Failure Mode Control Variables .. 46

ii

Standby Systems .. 47

Non-Fatal Failures .. 50

Modeling Consequences of Failure (System Performance) ... 50

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ tǊƻōŀōƛƭƛǎǘƛŎ wƛǎƪ !ǎǎŜǎǎƳŜƴǘ .. 57

Basic PRA Concepts ... 57

Modeling Initiating Events in GoldSim .. 59

Modeling Random Initiating Events.. 60

Modeling Initiating Events Resulting from Failures ... 61

Modeling Pivotal Event Sequences in GoldSim ... 61

Example PRA GoldSim Applications .. 64

PRA of a Lunar Base ... 65

PRA of an Unmanned Exploration Mission ... 70

Summary ... 73

References .. 74

Introduction

1

Introduction
Things fail. Some failures are simply inconveniences, while others have can have significant economic

and societal impacts (e.g., resulting in loss of life).

Reliability modeling involves modeling the ways that systems can fail (and be repaired) in order to help

determine how to increase their design life, and eliminate or reduce the likelihood of failures, downtime

and safety risks. It involves developing a mathematical representation (a model) of an existing or

proposed engineered system in order to predict the performance of the system over time. The system

(e.g., a furnace) consists of multiple components (e.g., a blower, a burner) that work together to carry

out one or more functions. The output of these models typically consists of predictions of measures

such as reliability (the probability that a component or system will perform its required function(s) over

a specified time period) and availability (the probability that a component or system is performing its

required function(s) at any given time). Reliability models are typically used to compare design

alternatives on the basis of metrics such as throughput, warranty and/or maintenance costs.

For some systems, the analyst may be more concerned with (probabilistic) risk assessment than with

reliability. Probabilistic risk assessment (PRA) was initially developed to analyze complex systems such

as nuclear power plants and space missions. It focuses on predicting the probability of those

(presumably rare) failures that can lead to injury, loss of life, severe damage to the system, or perhaps

damage to the surrounding environment. Hence, in a PRA, the output of the model typically is the

probability of a particular unlikely, but high consequence outcome (e.g., catastrophic failure of the

system), and identification of those events or components most likely to lead to that outcome. Risk

assessment models are typically used to evaluate system safety and inform decisions regarding the

allocation of resources (e.g., design or operational changes) to accident prevention.

Although reliability modeling and risk assessment share some common features (e.g., they both deal

with failure of various components and systems), these two types of analyses traditionally use different

types of approaches (since they are focused on different types of results). This document discusses how

GoldSim, a dynamic probabilistic simulation program, can be used for both types of analyses.

Simulation-based approaches such as that used by GoldSim can make it possible to tackle complex

reliability and risk assessment problems that cannot be easily or realistically addressed using traditional

approaches.

For reliability modeling, the fundamental outputs produced by GoldSim consist of traditional reliability

metrics (e.g., reliability and availability) for the overall system, and for individual components within

that system. For risk assessment, GoldSim can be used to compute the probability of specific

consequences (e.g., an accident leading to loss of life) to support risk management for the system.

GoldSim also catalogs and analyzes failure scenarios, which allows for key sources of unreliability and

risk to be identified (i.e., root cause analysis).

However, the true power of GoldSim is that it can do more than compute only these kinds of reliability

and risk management metrics. This is because GoldSim differs from the few existing simulation-based

approaches to reliability and risk assessment in that it combines powerful features for representing the

failure (and repair) of complex systems with the flexibility to represent the true dynamic complexity and

evolution of the entire system. That is, GoldSim is first and foremost a powerful and extremely flexible

general-purpose, probabilistic, dynamic simulator that has been used to simulate the behavior and

Introduction

2

evolution of a wide variety of complex systems ranging from environmental systems (e.g., mines,

watersheds, waste disposal sites) to engineered systems (e.g., processing facilities, machines, space

missions) to business systems (e.g., companies, projects).

By combining these fundamental capabilities with the Reliability Module, a specialized extension for

dynamically modeling the failure (and repair) of engineered components, GoldSim makes it possible to

build άtotal system modelsέ ǘƘŀǘ Ŏŀƴ represent 1) evolving environmental conditions; 2) the realistic,

dynamic complexity of failure of components within the system (e.g., complex interdependencies,

failure rates that respond to evolving environmental conditions); and 3) the actual consequences of

failure (e.g., changes in throughput, costs, loss of life, and other measures of system performance).

Purpose and Outline
The purpose of this White Paper is to explain how GoldSim can be used for reliability modeling and

probabilistic risk assessment. The document is longer than the typical White Paper, as the objective is

not just to describe GoldSim in simplified, broad terms όƛΦŜΦΣ άŀǊƳ-ǿŀǾƛƴƎέ that provides very little

insight), but instead to provide sufficient detail such that the reader can obtain a good understanding

and overview of what the software can actually do (and how it does it). Because GoldSim is very

powerful and flexible, doing so requires more than just a few pages (although this document contains

lots of screen captures, so it is not as long as it might seem). Note, however, that the paper does not

attempt to teach you how to actually use the software; it is intended to simply clearly explain its

capabilities in simple language. Readers interested in learning more details are pointed to additional

sources of information at the end of the paper.

In order to illustrate how GoldSim can be used for reliability analysis and probabilistic risk assessment,

the document is organized as follows:

¶ How is GoldSim Different from Traditional Approaches? First we provide a very general overview

of how GoldSim differs from traditional approaches to reliability modeling and probabilistic risk

assessment.

¶ Basic GoldSim Concepts. In order to demonstrate how GoldSim can be used for reliability

modeling and probabilistic risk assessment, it is first necessary to provide a brief overview of the

basic concepts underlying simulation modeling in general, and more specifically, the GoldSim

simulation framework.

¶ DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ Modeling. After obtaining an understanding of basic GoldSim

concepts, it is then possible to illustrate how GoldSim can be used for reliability modeling. This

is done by showing a number of example models.

¶ DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ tǊƻōŀōƛƭƛǎǘƛŎ wƛǎƪ !ǎǎŜǎǎƳŜƴǘ. This builds upon the previous section to

illustrate how GoldSim can be used for probabilistic risk assessment. Several aerospace case

studies are discussed to illustrate the key concepts.

¶ Summary. The document will conclude with a brief summary and a description of ways in which

you can learn more about GoldSim.

How is GoldSim Different from Traditional Approaches?

3

How is GoldSim Different from Traditional Approaches?
When discussing how GoldSim differs from other approaches, it is useful to differentiate reliability

modeling from probabilistic risk assessment. GoldSim can be used for both types of analyses. With

traditional approaches, however, these two types of analyses use different types of tools (since they are

focused on different types of results).

Traditional Approaches to Reliability Modeling
It is assumed that the reader is familiar with traditional reliability modeling approaches. Ebeling (2009) is

a good introductory text that discusses these approaches.

Most traditional reliability modeling approaches involve the assumption of a static model, where the

system configuration never changes (other than due to the failure/repair of components), and where its

ǇǊƻǇŜǊǘƛŜǎ ŘƻƴΩǘ ŎƘŀƴƎŜ ǿƛǘƘ ǘƛƳŜΦ ¢Ƙƛǎ ƛǎ ŀ ŎƻƴǾŜƴƛŜƴǘ ŀǎǎǳƳǇǘƛƻƴΣ ŀǎ ƛǘ ŀƭƭƻǿǎ ǘƘŜ ǳǎŜ ƻŦ ǎƛƳǇƭŜ

techniques, such as closed-form mathematical equations or reliability block diagrams. Markov chains

are another traditional reliability approach, and although they introduce an element of dynamism, the

system itself (and its properties) cannot change with time. Because of the simplifying assumptions

required to use these conventional techniques, they may be inappropriate for some kinds of systems.

Some of the difficulties with using these approaches for complex systems are summarized below:

Closed-Form Equations. These methods are heavily dependent on classical models (i.e., they have

been primarily developed for use with standard failure distributions like the Exponential and

Weibull). Even if failure data can be fitted to a standard distribution, it is difficult to model complex

systems with closed-form equations. For example, if a system has two Weibull failure modes, they

cannot be algebraically combined into a single Weibull failure mode for use with the Weibull

reliability equation.

Reliability Block Diagrams/Closed-Form Solutions. Reliability block diagrams can be used to

formulate closed-form solutions when modeling many systems of components. Such models,

however, are static, assume the system is in steady state, and do not account for the highly dynamic

nature of many systems. Moreover, unless (simplistic) correction factors are used, the approach

assumes that all of its components are independent.

Markov Chains. aŀǊƪƻǾ ŎƘŀƛƴǎ ŜƴǳƳŜǊŀǘŜ ŀ ƴǳƳōŜǊ ƻŦ ǎȅǎǘŜƳ άǎǘŀǘŜǎέ ŀƴŘ ǘƘŜ ǇǊƻōŀōƛƭƛǘƛŜǎ ŦƻǊ

transitioning between these states and can be used to represent systems that cannot be handled

using reliability block diagrams and closed-form solutions. However, the number of transition

probabilities (and the computational effort) required to solve a Markov chain grows exponentially

ǿƛǘƘ ǘƘŜ ƴǳƳōŜǊ ƻŦ ǎǘŀǘŜǎΦ .ŜŎŀǳǎŜ ƻŦ ǘƘƛǎ άǎǘŀǘŜ-space ŜȄǇƭƻǎƛƻƴέΣ ƛƴ Ƴŀƴȅ ŎŀǎŜǎ ŀ ǎȅǎǘŜƳ Ƴǳǎǘ ōŜ

greatly simplified in order to use a Markov chain approach.

Of course, the conventional approaches are appropriate for many systems, particularly when employed

by an experienced practitioner. However, as we will discuss below, in some cases a more realistic

reliability model may be required.

Traditional Approaches to Probabilistic Risk Assessment for Engineered Systems
Risk assessment is a very broad field, utilizing a variety of quantitative approaches. In the current

context, however, we are primarily concerned with risk assessment of complex engineered systems

How is GoldSim Different from Traditional Approaches?

4

(e.g., nuclear power plants, infrastructure such as dams, and space and defense systems) that are

composed of highly-reliable and frequently redundant components, which in most cases are required to

have an extremely low risk of a catastrophic failure.

The conventional approach to risk assessment for such systems focuses on the analysis of initiating

events and subsequent event sequences that could lead to failures, and on enumerating and calculating

the probabilities of different outcomes through logic-based procedures (e.g., event trees/fault trees).

Stamatelatos et al. (2011) and Vesely et al. (2002) provide good descriptions of these approaches.

For many types of systems (e.g., nuclear power plant probabilistic risk assessments), these approaches

work well. However, systems that are highly dynamic and/or have complex dependencies among failure

processes may be difficult to realistically represent and/or may require a tremendous amount of

preprocessing effort when using event tree/fault tree approaches.

As a result, an approach like GoldSim's that facilitates explicit representation of complex dynamics

potentially provides a powerful complement to existing methods.

 Note: Stamatelatos et al. (2011) ƛǎ ǘƘŜ ƭŀǘŜǎǘ ǾŜǊǎƛƻƴ ƻŦ b!{!Ωǎ Probabilistic Risk

Assessment Procedures Guide for NASA Managers and Practitioners. In addition to discussing

traditional logic-based procedures in detail, it also briefly discusses simulation-based

approaches, and in fact, presents an example using GoldSim. Mattenberger et al. (2015)

provides a comparative analysis of a simulation-based approach to PRA (specifically using

GoldSim) to traditional approaches (for crewed spacecraft missions).

The GoldSim Approach to Reliability Modeling and Risk Assessment
GoldSim is a general purpose dynamic, probabilistic (Monte Carlo) simulator. Dynamic simulation allows

the analyst to develop a representation of the system, and then observe thaǘ ǎȅǎǘŜƳΩǎ predicted

performance over a specified period of time.

The primary advantages of dynamic probabilistic simulation are:

¶ The system can evolve into any feasible state and its properties can change suddenly or

gradually as the simulation progresses.

¶ The system can be affected by random processes, which may be either internal (e.g., failure

modes) or external (e.g., environmental).

¶ If some system properties are uncertain, the significance of those uncertainties can be

determined.

In a dynamic, Monte Carlo simulation, the dynamic behavior of the system (e.g., evolving environment,

various failures and repairs, system performance) is simulated many times. These multiple results

(referred to as realizations of the system) can then be combined to provide not only a mean, but also a

range on the performance of the system. In addition to the statistical results these realizations provide,

multiple realizations may also reveal failure modes and scenarios that may not be apparent, even to

experienced risk and reliability modelers.

In addition to providing a more accurate representation of uncertainty, GoldSim also allows you to

readily create a more detailed and accurate representation of your system than can be achieved with

even the most sophisticated risk and reliability methodology.

How is GoldSim Different from Traditional Approaches?

5

With GoldSim, you can:

Model the external environment: Because GoldSim is a general purpose simulator, the environment

in which the system operates can be readily modeled, and can affect and interact with the system.

Model components that have multiple failure modes: GoldSim allows you to create multiple failure

modes for components, each of which can either be defined by a distribution or occur when a

specified condition arises. Failures which occur according to a distribution do not have to use time

as the control variable. For example, a vehicle might use mileage to define failure, while an aircraft

might use the number of cycles.

Model complex operating rules. Components can be specified to turn on and off according to a

fixed schedule and/or in response to external events. This allows accurate calculation of availability,

and can also affect failures (since failures based on distributions can choose, among other things, to

use total time or operating time as the control variable).

Model complex interdependencies: In addition to providing a logic-tree mechanism to define

relationships (e.g., the power supply must be operating in order for the rest of the system to

operate), GoldSim also allows you to model the more subtle effects of failure on other portions of

the system. For example, you can easily model a situation where the failure of one component

causes another component to wear more quickly. You can also easily model non-fatal failures (i.e.,

failure modes that only partially degrade the performance of a component).

These features and capabilities provide a powerful engine for realistically modeling the risk and

reliability of complex engineered systems.

In the remainder of this document, we will explain in more detail (using example models) how GoldSim

can be used to represent such systems.

Basic GoldSim Concepts

6

Basic GoldSim Concepts
Before describing how GoldSim can be used for reliability modeling and risk assessment, it is first

necessary to provide a brief overview of the basic concepts underlying simulation modeling in general,

and more specifically, the GoldSim simulation framework.

Simulation Concepts
GoldSim carries out dynamic, probabilistic simulationsΦ ¢ƘŜ ǘŜǊƳ άǎƛƳǳƭŀǘƛƻƴέ ƛǎ ǳǎŜŘ ƛƴ ŘƛŦŦŜǊŜƴǘ ǿŀȅǎ

by different people. As used here, simulation is defined as the process of creating a model (i.e., an

abstract representation or facsimile) of an existing or proposed system (e.g., a business, a project, an

organization, a facility, an ecosystem, a mission, a machine) in order to identify and understand those

factors which control the system and/or to predict (forecast) the future behavior of the system. Almost

any system that can be quantitatively described using equations and/or rules can be simulated.

In a dynamic simulation, the system changes and evolves with time (in response to both external and

internal influences that the analyst specifically defines), and your objective in modeling such a system is

to understand the way in which it is likely to evolve, predict (forecast) the future behavior of the

system, and determine what you can do to influence that future behavior. That is, the purpose of a

dynamic simulation is typically to predict the way in which the system will evolve and respond to its

surroundings, so that you can identify any necessary changes that will help make the system perform

the way that you want it to.

A probabilistic simulation recognizes that the controlling parameters, processes and events for any

system you are trying to simulate may not be able to be predicted with certainty and/or may not be well

understood, and it therefore attempts to represent this uncertainty explicitly and quantitatively. In this

regard, there are two fundamental types of uncertainty that it is important to distinguish between and

represent:

1) that due to inherent (temporal) randomness (e.g., a stochastic process); and

2) that due to ignorance or lack of knowledge.

Failures are a classic example of the first item: we may be able to describe failures statistically, but when

the actual failures occur is inherently random. On the other hand, the second item reflects the fact that

in some parts of our system, we may simply have a lack of knowledge regarding a particular variable

(e.g., the strength of a material, or the properties of a soil).

GoldSim is able to represent both types of uncertainty. It does this by quantitatively representing the

uncertainty in inputs (e.g., using distributions describing failure rates, the rates of other events, and the

uncertainty in key variables). Uncertainty in inputs is propagated to the uncertainty in the outputs using

Monte Carlo simulation. In Monte Carlo simulation, the entire system is simulated a large number (e.g.,

1000) of times. Each of these simulations is referred to as a realization of the system. For each

ǊŜŀƭƛȊŀǘƛƻƴΣ ŀƭƭ ƻŦ ǘƘŜ ǇŀǊŀƳŜǘŜǊǎ ŘŜǎŎǊƛōŜŘ ōȅ ŘƛǎǘǊƛōǳǘƛƻƴǎ ŀǊŜ άǎŀƳǇƭŜŘέ όŦƻǊ ŘƛǎǘǊƛōǳǘƛƻƴǎ ǊŜǇǊŜǎŜƴǘƛƴƎ

failure rates or other stochastic processes, multiple times). The system is then simulated through time

such that the outputs of the system can be computed. This results in a large number of separate and

ƛƴŘŜǇŜƴŘŜƴǘ ǊŜǎǳƭǘǎΣ ŜŀŎƘ ǊŜǇǊŜǎŜƴǘƛƴƎ ŀ ǇƻǎǎƛōƭŜ άŦǳǘǳǊŜέ ŦƻǊ ǘƘŜ ǎȅǎǘŜƳ όƛΦŜΦΣ ƻƴŜ ǇƻǎǎƛōƭŜ ǇŀǘƘ ǘƘŜ

system may follow through time). The results of the independent realizations are assembled into

probability distributions of possible outcomes.

Basic GoldSim Concepts

7

What is GoldSim?
[ŜǘΩǎ ǿŀƭƪ ǘƘǊƻǳƎƘ ŀ ǾŜǊȅ ǎƛƳǇƭŜ ŜȄŀƳǇƭŜ ǘƘŀǘ ƛƭƭǳǎǘǊŀǘŜǎ ǘƘŜǎŜ ŎƻƴŎŜǇǘǎΦ GoldSim is essentially a high-

level programming language for building simulation models (but does not require you to be a computer

programmer). It is highly-graphical and object-oriented, such that you create, document, and present

models by creating and manipulating graphical objects representing the components of your system,

processes, data and relationships between the data:

The simple model above has five objects: Capacity, Inflow, Pond, Leakage and Pumping_Rate. Each of

these objects represents a feature (e.g., a pond), a parameter or property (the capacity of the pond), or

a process or event (inflow and leakage from the pond). The objects representing features, parameters,

processes, and events in GoldSim are called elements. The purpose of this particular model is to predict

the volume of water in the pond as a function of time, accounting for specified inflows and outflows.

 Note: This particular example intentionally does not model failures (e.g., which could

affect the pumping rate); we will address that in subsequent sections. Here we will simply use

this example to illustrate the fundamental concepts of dynamic, probabilistic simulation.

Elements are the fundamental building blocks of a GoldSim model, and each type has a particular

symbol or graphical image by which it is represented on the screen. You give each element a unique

name by which it is referenced. GoldSim provides a wide variety of elements (over 50), each of which

serves a different purpose. Some of these elements simply provide a mechanism for the user to enter

input data into the model (e.g., Capacity, Pumping_Rate). Other elements represent functions which

operate on one or more inputs and produce one or more outputs (e.g., Leakage). Some elements

represent uncertaint parameters or stochastic processes (e.g., Inflow). And other classes of elements are

relatively complex and generate the internal dynamics of a model. In this simple model, the element

Pond serves this purpose.

In particular, the element named Pond (referred to in GoldSim as a Reservoir) integrates material flows

over time. In this case, the material is water. The Reservoir element solves a time integral: it integrates

the inflows and outflows, and by doing so in this case computes the volume of water in the pond at any

time in the simulated future.

Basic GoldSim Concepts

8

As pointed out, as a general rule, each type of element in GoldSim has one or more inputs and produces

one or more outputs. Each element has a properties dialog where the inputs are entered. The

properties dialog for the Reservoir element representing the Pond looks like this:

Note that when you link one element to another (e.g., by referencing another element in an input field

as shown above), GoldSim automatically draws an arrow (referred to as an influence) between the

elements. The influence visually indicates the dependency of one element on another. In the example

above, the influences indicate that:

¶ Pond is influenced by (i.e., is a function of) Capacity, Inflow, Leakage and Pumping_Rate.

¶ Leakage is influenced by Pond (which forms a feedback loop between these two elements).

One of the more unique and powerful features of GoldSim is that the program is dimensionally aware.

GoldSim has an extensive internal database of units and conversion factors. You can enter data and

display results in any units. For example, you could add meters and feet in an equation, and GoldSim

would internally carry out the conversion. Note, however, that if you tried to add meters and hours,

GoldSim would issue a warning message and prevent you from doing so.

When elements are created, you must specify their output dimensions. When elements are linked,

GoldSim ensures dimensional consistency and carries out all of the unit conversions internally. In this

particular example, the Pond has Display Units of a volume (m3). As a result, GoldSim expects the

Upper Bound (Capacity) to have dimensions of a volume, and the Rate of Change (Inflow, Leakage and

Pumping_Rate) to have dimensions of volume per time. If they did not, GoldSim would display an error.

Basic GoldSim Concepts

9

Running a Model
Systems that are changing with time are described mathematically using differential equations. In the

simple example shown above, we have only a single variable (the volume), so this can be described

using an ordinary differential equation as follows:

To write this in terms of the volume, we take the integral:

To solve for the volume as a function of time, we need to solve this integral. In simple systems (e.g., if

the flows were constant), we can solve this analytically. For almost any real system that you would be

interested in modeling, however, an analytical solution is not available. Therefore, a dynamic simulator

like GoldSim must solve such equations numerically (by computing an approximate solution). This is

what the Reservoir element does.

To solve this (or any) integral numerically, it is necessary to discretize time into discrete intervals

referred to as timestepsΦ DƻƭŘ{ƛƳ ǘƘŜƴ άǎǘŜǇǎ ǘƘǊƻǳƎƘ ǘƛƳŜέ ōȅ ŎŀǊǊȅƛƴƎ ƻǳǘ ŎŀƭŎǳƭŀǘƛƻƴǎ ŜǾŜǊȅ ǘƛƳŜǎǘŜǇΣ

with the values at the current timestep computed as a function of the values at the previous timestep.

Hence, in order to dynamically simulate a system in GoldSim, you must specify the duration of the

simulation (e.g., 1 year) and the length of the timestep (e.g., 1 day). GoldSim provides a flexible dialog

for specifying how it steps through time:

Basic GoldSim Concepts

10

There are two ways to carry out a dynamic simulation in GoldSim (specified by selecting the Time Basis

in this dialog):

¶ Lƴ ŀƴ ά9ƭŀǇǎŜŘ ¢ƛƳŜέ ǎƛƳǳƭŀǘƛƻƴΣ ȅƻǳ ǎǇŜŎƛŦȅ ŀ ǎƛƳǳƭŀǘƛƻƴ Duration. The simulation is then

tracked in terms of the elapsed time since the simulation began.

¶ Lƴ ŀ ά/ŀƭŜƴŘŀǊ ¢ƛƳŜέ ǎƛƳǳƭŀǘƛƻƴΣ ȅƻǳ ŜƴǘŜǊ ŀ Start Time and an End Time, and the simulation is

tracked in terms of the calendar date/time (i.e., GoldSim tracks things like what hour of the day,

day of the week and month it is during the simulation, and you can explicitly refer to these in

the simulation).

If the simulation you want to run is very short (e.g., minutes or hours) or very long (e.g., hundreds of

years), in most cases an Elapsed Time simulation would be appropriate. However, when your simulation

duration is between these two extremes, it is quite possible that you will want to run a Calendar Time

simulation. This is because some inputs, or the behavior of the system itself, might depend on the time

of day or the date (i.e., parameters may have diurnal and/or seasonal patterns), and hence you will want

to specifically track and reference this information in your model .

Basic GoldSim Concepts

11

 Note: To ensure that the numerical approximations in a dynamic simulation are accurate,

a sufficiently small timestep must be used. The appropriate timestep length is a function of how

rapidly the system represented by the model is changing: the more rapidly it is changing, the

shorter the timestep required to accurately model the system. It is important to note, however,

that the actual timestep length in a simulation is not necessarily constant, and in fact, when

simulating events (such as failures), GoldSim automatically inserts timesteps in order to

accurately simulate them. That is, if an event occurs at a particular time, GoldSim can interrupt

the simulation and update the model. For example, consider a failure that occurs 12.54 days

into the simulation, and is repaired 0.72 days later. The simulation would be updated (i.e., a

timestep would be inserted) at 12.54 days to reflect the failure, and would subsequently be

updated at 13.26 days to reflect the repair. This allows GoldSim to model such systems without

an inordinate level of computational effort.

If you are running a probabilistic simulation, you must also specify how many realizations of the model

you would like to run:

Displaying Basic Simulation Results
After running a model, GoldSim can generate and display different types of results, in either graphical or

tabular form. The most common results viewed are time history results and distribution results.

A time history result simply shows how a model output is predicted to change with time. As such, it is

the fundamental type of result produced by a dynamic simulation model. The x-axis is elapsed time (or

date/ time) and the y-axis is the value of the output. Here is an example of a simple time history for our

pond model:

Basic GoldSim Concepts

12

This is the plot of a single realization. In a probabilistic model, we run multiple realizations (each

representing a possible future). Here we show 100 realizations:

A more useful way to display multiple realizations (i.e., a probabilistic time history result) is to display it

in the form of percentile bands:

Basic GoldSim Concepts

13

A distribution result shows a probability distribution of an output at a specific point in time (e.g., the

end of the simulation):

Basic GoldSim Concepts

14

Here we are displaying the result in terms of a cumulative distribution function (CDF). The y-axis shows

the probability of not exceeding the value on the x-axis. So in this example, if we look at an x-axis value

of 100 m3, we see there is about a 60% chance that volume at the end of the simulation will not exceed

that value (and hence a 40% chance that it will exceed that value).

Modeling Events
Use of GoldSim for modeling reliability and risk assessment requires a basic understanding of one set of

powerful features in GoldSim: discrete event modeling.

When things move through or change within a system, the dynamics can be conceptualized in two

different ways: continuously or discretely. Things that move continuously can be thought of as flowing.

An example of this is the movement of water. Other things move or happen discretely or

instantaneously (e.g., such that they must be tracked individually). Examples of this include financial

transactions, the movement of items through a factory, and, of course, failures and repairs.

The example we discussed above dealt only with continuous dynamics (the flow of water). It is

important to understand, however, that GoldSim provides powerful capabilities for representing

discrete dynamics as well. In fact, most real-world systems are best described using a combination of

continuous and discrete dynamics (i.e., hybrid systems). And because failures and repairs are discrete

events, the ability of GoldSim to properly handle these is critical.

DƻƭŘ{ƛƳ ŀƭƭƻǿǎ ȅƻǳ ǘƻ ǊŜǇǊŜǎŜƴǘ άƛƴǎǘŀƴǘŀƴŜƻǳǎέ ŎƘŀƴƎŜǎ ǘƻ ŀ ƳƻŘŜƭ ōȅ ǇǊƻǾƛŘƛƴƎ ŀ ƳŜŎƘŀƴƛǎƳ ŦƻǊ ŀ

model to generate and respond to events. This is accomplished by 1) providing the ability to generate

events in a number of different ways, and 2) allowing such events to instantaneously trigger various

elements to take a particular action (e.g., instantaneously change their value).

In GoldSim, an event can be generated in one of five ways:

1. The event occurs when a specified condition (e.g., X > Y) becomes true or false;

2. The event occurs when a specified output in the model changes;

3. The event occurs at a specified calendar or elapsed time;

4. The event occurs based on a specified rate of occurrence, which can be treated as regular or

random ("occur exactly once a week" or "occur, on average, once a week"); or

5. The event occurs (failures and repairs) based on specified failure models, conditions and

interdependencies.

Once an event is generated, a variety of GoldSim elements can be triggered by the event, with each

element responding to the event (taking a particular action) in a different manner. The ability to

superimpose the effects of events (such as failures) on continuously varying systems (in order, for

example, to model consequences) is one of the most powerful features of GoldSim.

Building Large, Hierarchical Models
Although some GoldSim models are very simple (such as the simple example above), consisting of a

small number of elements, complex GoldSim models can have hundreds or thousands of elements. In

order to manage, organize and view such a model it is useful (in fact, essential) to group the elements

into Containers. A Container is simply a collection of elements.

Basic GoldSim Concepts

15

A Container can be thought of as a "box" into which other elements have been placed. In a sense, it is

ƭƛƪŜ ŀ ŘƛǊŜŎǘƻǊȅ ŦƻƭŘŜǊ ƻƴ ȅƻǳǊ ŎƻƳǇǳǘŜǊΦ ¢ƘŜ ŜƭŜƳŜƴǘǎ ƛƴǎƛŘŜ ǘƘŜ /ƻƴǘŀƛƴŜǊ Ŏŀƴ ōŜ ǘƘƻǳƎƘǘ ƻŦ ŀǎ ŀ άǎǳō-

ǎȅǎǘŜƳέ ƻŦ ȅƻǳǊ ƳƻŘŜƭΦ /ƻƴǘŀƛƴŜǊǎ Ŏŀƴ ōŜ ǇƭŀŎŜŘ ƛƴǎƛŘŜ ƻǘƘŜǊ /ƻƴǘŀƛƴŜǊǎΣ ŀƴŘ ŀƴȅ ƴǳƳōŜǊ ƻŦ ƭŜǾŜƭǎ ƻŦ

containment can be created. This ability to organize model elements into a hierarchy provides a

powerful tool for creating "top-down" models, in which the level of detail increases as you "drill down"

into the containment hierarchy.

The example below shows a system that has been divided into a number of distinct sub-systems:

All of the elements with a small triangle in their upper left-hand corner are Containers. Clicking on the

triangle allows you to drill down into (i.e., enter) that Container to see more details. The hierarchy and

contents of the Containers are shown in the tree structure on the left side of the screen. The elements

inside a particular Container are shown on the right side of the screen.

 Note: As we will see below when we discuss how GoldSim models failures in reliability and

risk assessment models, Containers play a critical role in representing systems of components.

The ability to create sub-systems using Containers provides a powerful capability: the reuse of sub-

systems. A user can create a complex sub-system, and then document and save it, such that a

Basic GoldSim Concepts

16

subsequent user could simply drop the sub-system into a new model. This facilitates the creation of a

library of documented and verified sub-systems. Such a library can be used to quickly and efficiently

build complex models.

Building Transparent, Well-Documented Models
A key feature of any modeling tool is how well it allows you to document and explain your model.

Properly documenting your model is critical for three important reasons:

¶ Many models have a long lifetime. As a result, you will often need to revisit and make

modifications to a model many months (or years) after you last used it. If the model is not well

documented, you will need to waste time coming back up to speed with the model in order to

understand it well enough to use the model and make any modifications that are necessary.

¶ Many models are either built by multiple people, or pass from one person to another over time.

In order for others who need to work on the model to do so effectively, it must be well

documented.

¶ Most models that an analyst builds are actually built for someone else (e.g., a manager, a client,

a regulator, some other stakeholder). Although it may not be necessary for them to understand

all of the technical details of a model in order to use it, in most cases it is necessary for them to

understand the basics of what the model is doing. A model which cannot be easily understood is

a model that will not be used or believed. A well-documented model is more likely to be used

by the stakeholders for whom it was built.

As a result, GoldSim was specifically designed to allow you to effectively document, explain and present

your model directly inside of the model itself. You can add graphics, explanatory text, notes and

hyperlinks to your model:

Basic GoldSim Concepts

17

GoldSim's powerful documentation and presentation abilities, coupled with the ability to create

hierarchical, top-down models, allows you to effectively describe and explain your model at different

(and appropriate) levels of detail to different audiences.

Summary
The purpose of this section was to provide a very short introduction to the basic concepts upon which

GoldSim is based. This overview, although very brief, provides sufficient background information for us

now to describe in some detail how GoldSim can be used for reliability modeling and risk assessment.

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭing

18

DƻƭŘ{ƛƳΩǎ Approach to Reliability Modeling
In this section, we will describe in some detail how GoldSim can be used for reliability modeling. We will

start by describing some very simple problems, and will progress to describing a number of more

complex situations. DƻƭŘ{ƛƳ ƛǎ ŀ ǾŜǊȅ ǇƻǿŜǊŦǳƭ ǘƻƻƭΣ ŀƴŘ ƘŜƴŎŜ ƴƻǘ ŀƭƭ ƻŦ DƻƭŘ{ƛƳΩǎ features will be

described. However, the simple examples that are shown should proviŘŜ ŀ ƎƻƻŘ ƛƴŘƛŎŀǘƛƻƴ ƻŦ DƻƭŘ{ƛƳΩǎ

range of capabilities.

In particular, we will discuss the following topics:

¶ Modeling Simple Failures

¶ Modeling Multiple Failure Modes

¶ Modeling the Reliability of Systems

¶ Modeling Repairs, Replacement and Preventive Maintenance

¶ Modeling Complex Interdependencies and Dynamically Changing Systems

¶ Modeling the Consequences of Failure (System Performance)

The first step to modeling reliability in GoldSim, as it is in any other reliability and risk analysis modeling

methodology, is to develop a model of the system of interest with all of its components. In GoldSim, the

building blocks used to represent the components of the system are two specialized elements: the

Function element and the Action element:

Function elements are used to model components which operate continuously once turned on. Typical

examples of components modeled by Function elements include pumps and engines. Action elements

are used to represent components which must respond to a control command or condition. Typical

examples of components modeled by Action elements include switches and relays. Both element types

can fail, as well as be repaired and maintained.

Modeling Simple Failures
We will begin by considering the simplest case possible: a component that has a constant failure rate

(i.e., an exponential failure distribution). The reliability of such a simple component can be described

using a simple closed-form equation. In fact, the reliability (i.e., the probability that the component will

perform its required function over a specified time period t) can be written as follows:

2 Å

ǿƘŜǊŜ ˂ ƛǎ ǘƘŜ Ŏƻƴǎǘŀƴǘ ŦŀƛƭǳǊŜ ǊŀǘŜΦ Lǘ Ŏŀƴ ŀƭǎƻ ōŜ ǎƘƻǿƴ ǘƘŀǘ ǘƘŜ ƳŜŀƴ ǘƛƳŜ ǘƻ ŦŀƛƭǳǊŜ όa¢¢Cύ ƛǎ Ŝǉǳŀƭ ǘƻ

мκ˂Φ

{ƻΣ ŀǎ ŀƴ ŜȄŀƳǇƭŜΣ ƭŜǘΩǎ ŎƻƴǎƛŘŜǊ ŀ ŎƻƳǇƻƴŜƴt with a failure rate of 0.0003 failures per operating hour.

The reliability over a 300-day continuous operating period would then be:

2 Å Å

ÈÒ
ÄÁÙ πȢρρυ

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

19

The MTTF would be 3333 hr = 139 days.

So how would we model this in GoldSim? We first specify in GoldSim how the component can fail. The

component is represented by a Function element that looks like this:

The Function element dialog has lots of options (and we will discuss some of them later), but in this

case, there are only two fields that are of interest:

¶ Use simple failure rate instead of failure modes: This instructs GoldSim to assume a simple

exponential failure distribution.

¶ Failure Rate: ¢Ƙƛǎ ƛǎ ǘƘŜ ǊŀǘŜ ƻŦ ŦŀƛƭǳǊŜ όƛΦŜΦΣ ǘƘŜ ˂ ǘŜǊƳ ƛƴ ǘƘŜ Ŝǉǳŀǘƛƻƴǎ ŀōƻǾŜύΦ bƻǘŜ ǘƘŀǘ ǘƘƛǎ

also represents the (constant) hazard rate.

Once the Function is defined, we can simulate the system. What we are going to do is run the model for

the operating period of interest (300 days). During the simulation, GoldSim samples the failure

distribution and determines when the component fails. Of course, the failure distribution represents the

inherent randomness (i.e., the stochastic nature) of failure, so we will need to run a Monte Carlo

simulation with multiple realizations to see how the component will perform statistically. In this

example, we will run the model for 1000 realizations.

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

20

One of the basic outputs of the Function element is its Status at any given time. This is indicated by a

number. For example, a status of 0 indicates that the component is operating. A status of 2 indicates

that for one or more reasons, it is not. Here is a time history plot of a single realization (realization #6 of

1000) for the status for this component:

This indicates that for this realization, the component failed at just past 200 days. Given a MTTF (based

on the closed-form solution) of 139 days, such a failure time is reasonable. Although as we will see later,

the status of a component is very useful (e.g., we can reference it in order to realistically model complex

dependencies), what we are interested in for this example are the traditional statistical reliability

metrics. By collecting all of the realizations together, GoldSim automatically does so. Here are the

statistical results of the simulation of this component:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

21

Note that the Reliability is computed as 0.115 (consistent with the closed-form solution). The

confidence bounds indicate the uncertainty in this estimate (due to the number of realizationsύΦ ²ŜΩƭƭ

wait to discuss the Availability results until we consider repairs. If we press the Failure Times Results

button GoldSim displays the following result:

This is the simulated distribution of failures. The plot on the right is the CDF of the failure distribution.

We could press the CCDF button to display the complementary cumulative distribution function (which

is also referred to in this case as the reliability function):

If you look at the Statistics portion of the dialog, you will note a Mean (i.e., the MTTF) that is consistent

with the closed-form solution (i.e., 139 days).

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

22

Modeling Multiple Failure Modes
bƻǿ ǘƘŀǘ ǿŜ ƘŀǾŜ ŘƛǎŎǳǎǎŜŘ ǘƘƛǎ ǘǊƛǾƛŀƭ ŎŀǎŜΣ ƭŜǘΩǎ ƳŀƪŜ ƛǘ ŀ ōƛǘ ƳƻǊŜ ŎƻƳǇƭƛŎŀǘŜŘΦ ²Ŝ ǿƛƭƭ Řƻ this in two

ways:

¶ The component can fail due to multiple modes.

¶ The failure modes are time-dependent. That is, unlike the exponential failure, which is

memoryless, the time to failure for a particular mode is a function of how long the component

has been operating (i.e., the failure rate is not constant).

If we make the further assumption that the failure modes are independent and of a particular form,

such a system can still be solved using closed-form equations (the Reliability function can be computed

as the product of the Reliability function for each mode). However, in this example, we will use two

distributions (the Normal and LogNormal) that actually do not have closed-form solutions (although

there are techniques using statistical tables to solve for these). So wŜ ǿƻƴΩǘ ōƻǘƘŜǊ ǘƻ ǿŀƭƪ ǘƘǊƻǳƎƘ the

traditional calculations. Rather, we will just show how this is represented in GoldSim.

This example assumes three independent failure modes described using the following distributions:

¶ Weibull: Characteristic life = 1000 hrs; Shape factor (slope) = 2

¶ Normal: Mean life = 1200 hrs; Standard deviation = 200 hrs

¶ LogNormal: Mean life = 1000 hrs; Standard deviation = 100 hrs

The main page of the Function element representing the component looks like this:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

23

Note that the checkbox labeled Use simple failure rate instead of failure modes is cleared. As a result,

a Failure Modes tab is available. This is where we define the three failure modes:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛty Modeling

24

In this case, the first failure mode (the Weibull) is selected, so the Failure Mode Parameters section of

the dialog shows the inputs for that mode. The inputs for the other two modes could be accessed by

selecting them at the top of the dialog.

 Note: In a real model, we would not enter the parameters directly here as numbers.

Rather, we would define other elements and reference the element names here. If we were

uncertain about the parameters, we could define them as probability distributions to represent

this uncertainty.

 Note: By specifying multiple failure modes (e.g., early failures, random failures and wear

out failures) and taking advantage of some advanced dynamic failure mode features, you can

ǊŜŀŘƛƭȅ ǊŜǇǊŜǎŜƴǘ ŀ άōŀǘƘǘǳōέ ŦŀƛƭǳǊŜ ŎǳǊǾŜΦ

If we run this model (again, for 300 days and 1000 realizations) and look at the results, the combined

failure distribution looks like this:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

25

Note the rather complex shape. Note also that the MTTF is less than the mean of any of the individual

modes.

More interestingly, we can view a root cause analysis for the component to see which modes cause

failures:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

26

This indicates that 56% of the failures were due to the Weibull failure mode, 26% were due to the

LogNormal failure mode, and 8% were due to the Normal failure mode.

Modeling the Reliability of Systems
In the examples we have just discussed, we were considering a single component. Of course, in the real

world, systems consist of multiple components (e.g., a computer system consists of multiple

components, such as a hard drive, a power supply and a CPU). Depending on the configuration of the

components in the system (i.e., the system dependencies), a failure in one component may or may not

result in the failure of the system. The various configurations can be illustrated in the form of reliability

block diagrams. In traditional approaches, depending on the complexity of the configuration and

assumptions (e.g., independence), it may be possible to solve for these using closed-form solutions.

²ŜΩƭƭ ŎƻƴǎƛŘŜǊ ǎŜǾŜǊŀƭ ǊŜƭƛŀōƛƭƛǘȅ ōƭƻŎƪ ŘƛŀƎǊŀƳǎ ōŜƭƻǿΣ ŀƴŘ ƛƭƭǳǎǘǊŀǘŜ Ƙƻǿ DƻƭŘ{ƛƳ Ŏŀƴ very readily

represent any configuration.

Serial Systems

[ŜǘΩǎ ŦƛǊǎǘ ŎƻƴǎƛŘŜǊ ǘƘŜ ŦƻƭƭƻǿƛƴƎ simple system consisting of three components in series:

In this configuration, Component B requires Component A to be operating and Component C requires

Component B to be operating. Hence, all components must function for the system to function.

A B C

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

27

[ŜǘΩǎ further assume that each component fails according to a single mode:

¶ Component A: Weibull distribution with Characteristic life = 1000 hrs and Shape factor = 2

¶ Component B: Normal distribution with Mean life = 1200 hrs and Standard deviation = 200 hrs

¶ Component C: LogNormal distribution with Mean life = 1000 hrs and Standard deviation = 100

hrs

To represent systems in GoldSim, we are going to take advantage of a capability we discussed earlier in

this paper: the ability to create sub-systems using Containers. This capability makes it very easy for

GoldSim to represent any kind of system configuration in an intuitive manner.

The GoldSim model for this consists of four elements: a Function element representing the entire

system, and a Function element for each component. We first create a Function element and instruct

GoldSim to treat it as a system (i.e., a Container):

²Ŝ Ŏŀƴ ǘƘŜƴ άŜƴǘŜǊέ ǘƘƛǎ ŜƭŜƳŜƴǘ όōȅ Ŏƭƛcking the small red triangle). Inside this element we then see

the three components:

If we were to examine any of these, we would see a single failure mode defined for each. Here, for

example, is Component A:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

28

Note that the three components are visually connected (via influences). This is because their

dependencies (i.e., Component B requires Component A to be operating and Component C requires

Component B to be operating) have been specified by defining Operating Requirements for Component

B and Component C.

¢ƻ ǎŜŜ ǘƘƛǎΣ ƭŜǘΩǎ ƭƻƻƪ ŀǘ /ƻƳǇƻƴŜƴǘ .Υ

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

29

GoldSim allows you to create a Requirements tree (or optionally, the opposite, a Fault tree) to define

the Operating Requirements for the element. There are two types of Operating Requirements: External

Requirements and Internal Requirements. In order for the component to operate, External and Internal

wŜǉǳƛǊŜƳŜƴǘǎ Ƴǳǎǘ ōƻǘƘ ōŜ ƳŜǘΦ 9ȄǘŜǊƴŀƭ wŜǉǳƛǊŜƳŜƴǘǎ ŀǊŜ άƻǳǘǎƛŘŜέ ƻŦ ǘƘŜ ŎƻƳǇƻƴŜƴǘ ƛǘǎŜƭŦΦ Lƴ ǘƘƛǎ

case, the sole External Requirement for Component B is that Component A must be operating. Internal

wŜǉǳƛǊŜƳŜƴǘǎ ŀǊŜ άƛƴǎƛŘŜέ ǘƘŜ ŎƻƳǇƻƴŜƴǘΦ Lƴ ǘƘƛǎ ŎŀǎŜΣ ǘƘŜ ǎƻƭŜ LƴǘŜǊƴŀƭ wŜǉǳƛǊŜƳŜƴǘ for Component B

is that the component itself is not failed (due to its specified failure mode).

Component C is defined similarly, with an External Requirement that Component B must be operating

and an Internal Requirement that the component itself is not failed (due to its specified failure mode).

If we were to run the model, we could look at failure distributions and reliability metrics for each of the

three components. But that is not what we are interested in. We want to look at the combined failure

distribution and reliability metrics for the entire system. We can do this by examining the System

element itself (and looking at its results). If we look at the System element, we will note that it has no

External Requirements, and no failure modes of its own:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ weliability Modeling

30

Instead, it simply has a single Internal Requirement: that Component C be operating. If Component C is

operating, the system is operating. If Component C is not operating (because it has failed, or because

Component A or Component B have failed), the system has failed. Note that this is considered to be an

άLƴǘŜǊƴŀƭ wŜǉǳƛǊŜƳŜƴǘέ ōŜŎŀǳǎŜ /ƻƳǇƻƴŜƴǘ / ŀŎǘǳŀƭƭȅ ŜȄƛǎǘǎ inside of the System element.

If we run this model (for 50 days and 1000 realizations) and look at the results for the System, the failure

distribution looks like this:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

31

This should look familiar. It is statistically identical to the model with a single component and three

failure modes. That is, a system consisting of three independent serial components is mathematically

identical to a component with three independent failure modes.

The Reliability for this system is close to zero (the probability of system failing over 50 days is almost

100%):

Parallel Systems

[ŜǘΩǎ ƴƻǿ ŎƻƴǎƛŘŜǊ ǘƘŜ ǎŀƳŜ ǎȅǎǘŜƳΣ ōǳǘ ŀǎǎǳƳŜ ǘƘŀǘ ǘƘe three components are in parallel:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

32

In this configuration, only one of the components must function for the system to function (i.e., they are

redundant).

To modify the previous model to represent this configuration, we need to make two changes to the

model. First, we must remove the External Requirements that link Component A to Component B and

Component B to Component C. So, for example, Component B now looks like this:

The only Operating Requirement for Component B is an Internal Requirement that the component itself

is not failed (due to its specified failure mode).

A

B

C

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

33

As a result of these changes, the three components are no longer linked together by influences (since

they have no dependencies on each other):

To represent that fact that the system itself requires one of the three components to be operating, we

simply change the Operating Requirements for the System element. Instead of specifying that the

System is operating if C is operating, we specify that the System is operating if any of the components is

operating. This is done by using an OR gate in the Requirements tree:

In this case, we have specified Operating Requirements consisting of a Requirements tree that specifies

that in order for the System to operate, Component_A, Component_B or Component_C must be

operating (they are all listed under an OR gate in the tree).

If we run this model (again, for 50 days and 1000 realizations) and look at the results for the System, the

failure distribution looks like this:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

34

As we would expect, the MTTF for the system is significantly higher (and the shape of the distribution is

very different). Moreover, due to the redundant nature of the system, the Reliability is now about 64%

(instead of essentially zero):

k-out-of-n Redundancy

[ŜǘΩǎ ƴƻǿ ŎƻƴǎƛŘŜǊ ǘƘŜ ǎŀƳŜ ǎȅǎǘŜƳΣ ōǳǘ ŀǎǎǳƳŜ ǘƘŀǘ ǘƘŜǊŜ ƛǎ ŀ άн-out-of-оέ ǊŜŘǳƴŘŀƴŎȅ ŀƳƻƴƎ ǘƘŜ

three components. In particular, we assume that two of three components must be operating in order

for the system to operate. We would expect the performance of this system to be somewhere between

the serial system (all must be operating) and the parallel system (one must be operating).

To modify the previous model to represent this configuration, we simply need to change the OR gate in

the Requirements tree for the System element to an N-VOTE gate:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

35

In this case, we have specified Operating Requirements consisting of a Requirements tree that specifies

that in order for the System to operate any two of the components must be operating (they are all listed

under a 2-VOTE gate in the tree).

If we run this model (again, for 50 days and 1000 realizations) and look at the results for the System, the

failure distribution looks like this:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻach to Reliability Modeling

36

As we would expect, the MTTF for the system is between that for the parallel and series systems. This is

also the case for the Reliability:

Combined Series-Parallel Systems and Other Complex Configurations
The discussions above considered ǾŜǊȅ ǎƛƳǇƭŜ ŎƻƴŦƛƎǳǊŀǘƛƻƴǎΦ [ŜǘΩǎ briefly consider some more complex

configurations in order to see how they would be represented in GoldSim.

First, ƭŜǘΩǎ ŎƻƴǎƛŘŜǊ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ǎȅǎǘŜƳΥ

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

37

How would we represent this system in GoldSim? The approach is straightforward and very easy to

implement. First we would create the six components (Function elements) and place them inside

another Function element that was specified to be a System (i.e., a Container). Those six components

would have one or more failure modes. The dependencies illustrated in the diagram are then specified

by defining appropriate External Requirements for the six elements.

Components A, B and C would have no External Requirements.

The External Requirements for Component D would be an OR gate:

The External Requirements for Component E would be a simple dependence on Component C:

The External Requirements for Component F would be an OR gate:

This would result in the following influences to be drawn between the components:

A

D

B

F

C E

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

38

Finally, the System itself would have a single Internal Requirement: that Component F be operating:

Note that the Requirements tree for the Function element representing the System (shown above) can

be expanded to see the full requirements tree for all components inside the System:

If we run this model, we can view a causal analysis to see which components cause failure of the

System:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

39

[ŜǘΩǎ ƴƻǿ ŎƻƴǎƛŘŜǊ ƻƴŜ ŀŘŘƛǘƛƻƴŀƭ ŎƻƴŦƛƎǳǊŀǘƛƻƴΣ ƻƴŜ ǘƘŀǘ Ŏŀƴƴƻǘ ōŜ ŘŜŎƻƳǇƻǎŜŘ ƛƴǘƻ ǎŜǊƛŜǎ ŀƴŘ ǇŀǊŀƭƭŜƭ

relationships:

Based on the previous discussions, it should be obvious how this would be represented in GoldSim.

First we would create the five components (Function elements) and place them inside another Function

element that was specified to be a System (i.e., a Container). Those five components would have one or

more failure modes. The dependencies are then specified by defining appropriate External

Requirements for the five elements.

Components A and B would have no External Requirements.

The External Requirements for the other three components would all be OR gates. Here, for example,

are the External Requirements for Component E:

A

E

B

C

D

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

40

This would result in the following influences to be drawn between the components:

Finally, the System itself would have an Internal Requirement that was an OR gate:

Modeling Repairs, Replacement and Preventive Maintenance
In the previous sections we discussed how failure could be modeled in GoldSim. In many systems

failures can be repaired (or components completely replaced), and in order to model the actual

performance of the system (e.g., the availability), we need to be able to represent these repairs.

Moreover, because designing an effective preventive maintenance program is one of the more powerful

applications of reliability modeling, we want to be able to model such a program. Below we show how

GoldSim can readily represent repairs, replacement and preventive maintenance.

Modeling the Repair of Failure Modes

Recall the model that we discussed earlier that involved a single component with three failure modes.

We noted that the component had a Failure Modes tab that looked like this:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

41

In this case, the first of the three failure modes (the Weibull) is selected, so the Failure Mode

Parameters section of the dialog shows the inputs for that mode. The inputs for the other two modes

could be accessed by selecting them at the top of the dialog.

Note at the bottom of the dialog there is an option to Automatically repair failures. If we check this box,

we can define a repair time distribution for the failure mode (as either an Exponential, Gamma or

LogNormal). If a failure mode is set to automatically repair failures, when a failure occurs due to that

mode, the repair time is sampled from the distribution, and after the time passes, the failure is

considered to be repaired (and if the component has not simultaneously failed due to other modes, it

becomes operable again). Each failure mode can be assigned a different repair time distribution.

In this model, we will assign Exponential repair time distributions for each of the three failure modes,

with mean repair times of 100 hr, 150 hr, and 50 hr, respectively.

After running the model (for 300 days and 1000 realizations), we can plot the Status of the component.

Recall that the Status is represented by an integer, and a Status of 0 indicates that the component is

operating and a Status of 2 indicates that for one or more reasons, it is not. Here is a time history plot of

a single realization (realization #6 of 1000) for the Status for this component:

GoldSimΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

42

As can be seen, the component repeatedly fails and is repaired throughout the simulation. Due to the

differences in the repair time distributions for each of the failure modes (and the fact that the times are

sampled from distributions), we see a variability in the time to repair a failure.

[ŜǘΩǎ ƴƻǿ ƭƻƻƪ ŀǘ ǘƘŜ ǎǘŀǘƛǎǘƛŎŀƭ ǊŜǎǳƭǘǎ ŦƻǊ ŀƭƭ мллл ǊŜŀƭƛȊŀǘƛƻƴǎΥ

The Reliability of this component it zero (it never survives for 300 days), but the Availability is about

79%. That is, it is operating about 79% of the time.

Note that GoldSim computes two different Availabilities. The Operational Availability represents the

fraction of time the component has been operating over the simulated time. The Inherent Availability

represents the fraction of time the component has been operable over the simulated time. In this

simple model, these are the same. However, in many models they will be different. This is because a

component could be operable (unfailed), but may not be operating. There are a number of reasons that

this could be the case. For example, we could choose to define events that turn a component off and on

(e.g., perhaps it only operates during certain shifts):

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

43

If we did so, the Operational Availability would be smaller than the Inherent Availability because the

component could be operable (unfailed), but would not be operating for certain periods because it was

turned off.

When repairing a failure mode, GoldSim provides you with the ability to define exactly what a repair

means. Each failure mode has a dialog to define the Failure Mode Control Variable (FMCV):

The FMCV is the variable that is referenced by the failure mode to determine when failure occurs (i.e.,

the control variable represents the x-axis of a failure distribution plot). It defaults to Operating Time, but

can also be specified as Total Time or, as we will see later, to a user-defined metric such as mileage.

In this dialog, you can specify what happens during a repair (i.e., what the FMCV is reset to upon repair).

Resetting the FMCV to zero is equivalent to replacement (i.e., making it as good as new). But you could

also set it to a positive value (e.g., using a refurbished part that already has some wear on it).

Modeling Replacement and Preventive Maintenance

GoldSim provides the ability to model maintenance in two different ways:

¶ You can schedule a periodic replacement of the entire component (which repairs all failures and

resets the FMCV for all failure modes to zero).

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

44

¶ You can schedule a periodic preventive maintenance. When you do so, you can specify that the

maintenance only impacts certain failure modes and/or only resets their FMCVs to specified

values.

By doing so, you can run simulations to predict how different maintenance regimes impact system

performance.

Modeling Complex Interdependencies and Dynamically Changing Systems
In the sections above, we illustrated how GoldSim can readily model the failure and repair of systems of

components. ¢ƘŜ ƎǊŜŀǘ ǇƻǿŜǊ ƻŦ DƻƭŘ{ƛƳΩǎ simulation-based approach, however, is its ability to

represent systems that cannot easily be represented by traditional approaches, including:

¶ Systems that can be impacted by external environmental processes, and whose properties can

change suddenly or gradually as the simulation progresses; and

¶ Systems that have complex interdependencies, such as a situation where the failure of one

component causes another component to wear more quickly or non-fatal failures (i.e., failure

modes that only partially degrade the performance of a component).

This section will briefly illustrate the power and flexibility that GoldSim provides in this regard by

discussing a number of examples of such systems.

Common Mode Failures

Common mode failures are used to represent the fact that the failure rates of different components

may not be independent. There are a number of factors that could cause such a dependence, ranging

from the components sharing the same power supply to components responding to external

environmental conditions in the same manner.

When this is treated in traditional methods it is often treated in a very simplistic way (e.g., by adding a

άŎƻƳƳƻƴ ƳƻŘŜέ failure in series with those components sharing that failure mode). It is

straightforward for GoldSim to handle the system in such a simple way. For example, if you had three

parallel (redundant) components, you could simply include them inside a System (as we did previously),

and then assign the common-mode failure to the entire System:

If the components all depended on a common component (e.g., a power supply), this would also be

straightforward. The way to represent this in GoldSim would be to simply create a dependency between

a power supply component and each of those components (such that if the power supply failed, the

components all simultaneously failed):

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

45

Both of these methods cause the system to fail in response to a failure that affects all three components

simultaneously.

A more realistic representation of a dependence between failure modes (that is impossible to address at

all using traditional methods) is that failure rates for multiple components may be simultaneously

accelerated (e.g., due to environmental conditions), but the components do not necessarily fail at the

same time as a result. We discuss that below.

Responding to Evolving Operational Environments

In many cases, a failure mode may be affected by dynamically changing environmental factors. For

example, the wear on a component might be accelerated in hot environments. Moreover, it is possible

for multiple components to be impacted by the same factor.

GoldSim provides a powerful way to represent this. For each failure mode, you can specify an

Acceleration Factor. The Acceleration Factor is a non-negative real number which multiplies the actual

ŎƘŀƴƎŜ ƛƴ ǘƘŜ ōŀǎŜ ǾŀǊƛŀōƭŜ όŜΦƎΦΣ hǇŜǊŀǘƛƴƎ ¢ƛƳŜύ ǘƻ ŀǊǊƛǾŜ ŀǘ ǘƘŜ ŦŀƛƭǳǊŜ ƳƻŘŜΩǎ ŎǳǊǊŜƴǘ ϦŀƎŜϦ (i.e., it

changes the failure rate). Setting this value to a number less than one means the component will age

slower than normal (failure is decelerated), and setting it to a number greater than one will cause the

component to age faster than normal (failure is accelerated).

For example, we might have a component which ages twice as fast when it operates in ambient

temperatures of greater than 40 degrees Celsius. To represent this, we would simply specify the

following expression in the Acceleration Factor field:

If two components had a similar dependency, they would not necessarily fail at the same time, but both

of their failure rates would be accelerated at high temperature.

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

46

Load Sharing Systems

Another example of dynamic failure behavior is that associated with a load sharing system. A simple

example of such a system is one in which two components act in parallel (i.e., are redundant), but if one

component fails, the failure rate of the other component increases as a result of the additional load

placed on it.

Traditionally, this would be handled using a Markov analysis (which would be straightforward in this

simple case, but would get much more difficult if additional components and states needed to be

considered).

In GoldSim, this can be represented very simply using the same Acceleration Factor discussed in the

ǇǊŜǾƛƻǳǎ ǎŜŎǘƛƻƴΦ CƻǊ ŜȄŀƳǇƭŜΣ ƭŜǘΩǎ ŀǎǎǳƳŜ that if one of the components failed, we want the failure

rate for the other component to increase by 50%. We could represent this by defining an Acceleration

Factor for the failure modes for Component2 as follows:

Note that it references the Status of the other component (Component1). Recall that the main output of

a Function element is its Status. The Status takes on an integer value throughout the simulation (e.g., 0

if operating, 2 if failed; 4 if turned off, etc.). In this case, we are saying that if Component1 is operating,

there is no acceleration; if it is not operating, the Acceleration Factor is 1.5 (failure is accelerated by

50%).

Of course, Component1 would have a similar reference for its Acceleration Factor (it would reference

the status of Component2). Hence, representing such a complex dependency in GoldSim is easy and

intuitive.

Using Physically-Based Failure Mode Control Variables

As pointed out previously, in GoldSim each failure mode for a component has a dialog to define the

Failure Mode Control Variable (FMCV). The FMCV is the variable that is referenced by the failure mode

to determine when failure occurs (i.e., the control variable represents the x-axis of a failure distribution

plot). It defaults to Operating Time. It can also be specified as Total Time (which differs from Operating

Time due to failures, as well as components that can be turned off). For certain types of components,

the FMCV can also represent the number of cycles (number of landings, number of times turned on,

etc.).

In addition, you can define a custom, user-defined FMCV. This is important because in some cases, it

may be appropriate to define a failure control variable that is defined with respect to a physically-based

variable such as mileage or perhaps the cumulative load. Any monotonically increasing function can be

specified as a base variable. Because GoldSim is a flexible and powerful dynamic simulator, it can easily

model and track such variables (recall the beginning of this paper when we illustrated how GoldSim

could track the amount of water in a pond).

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

47

For example, if we were simulating an automobile, we could model (in great detail) the accumulated

mileage (accounting for seasonal trends, etc.). We would then define this as the FMCV for various failure

modes:

Standby Systems

Many systems have backup components that can be switched on in the event of a failure of a primary

component. Such a system provides an excellent example of the power and flexibility of GoldSim, and

also provides an example of the use of the Action element.

The example we will consider is shown below:

Primary and Backup are simply Function elements (like those we have discussed previously). They have

identical failure modes. There is one key difference: Primary is initially On (the Initial Status is ON is

checked):

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

48

while Backup is initially Off:

Note the ¢ǳǊƴ ƻƴΧ and ¢ǳǊƴ ƻŦŦΧ buttons. We will discuss these shortly.

²ŜΩǾŜ ŀƭǊŜŀŘȅ ƳŜƴǘƛƻƴŜŘ ǘƘŀǘ CǳƴŎǘƛƻƴ ŜƭŜƳŜƴǘǎ ƻǳǘǇǳǘ ŀ {ǘŀǘǳǎΦ IƻǿŜǾŜǊΣ ǘƘƛǎ ƛǎ ƴƻǘ ǘƘŜƛǊ ƻƴƭȅ

output. !ƳƻƴƎ ƻǘƘŜǊ ǘƘƛƴƎǎΣ ǘƘŜȅ ƻǳǘǇǳǘ ǎŜǾŜǊŀƭ ǘȅǇŜǎ ƻŦ άŜǾŜƴǘǎέΦ wŜŎŀƭƭ ŦǊƻƳ ŜŀǊƭƛŜǊ ƛƴ ǘƘƛǎ ǇŀǇŜǊ ǿŜ

discussed how GoldSim elements can generate and process events (discrete occurrences or

transactions). Whenever a Function element fails, it generates an event (named StopOperating).

Whenever it is repaired, it generates another event (named StartOperating). We can then use these two

events to model this system.

The elements named Backup_On and Backup_Off are Action elements. They are similar to Function

elements (e.g., they can fail), but they are used to model different kinds of components. Whereas

Function elements are used to model components which operate continuously once turned on (e.g.,

pumps, engines), Action elements are used to represent components which must respond to a control

command or condition (e.g., switches, relays). In this example they represent switches that turn the

Backup component on and off. Note, however, that these may fail when triggered to do so (i.e., they

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

49

can fail on demand). In GoldSim, among other things, we can specify a probability that a triggered

Action will be successful.

Action elements are triggered to act by a specified event, and if they are successful, they in turn emit an

event named ActionOK. (If the Action is unsuccessful, it generates an event named ActionFailed.) The

Action dialog looks like this (note the Element Action Trigger):

The StopOperating event from the Primary is the Element Action Trigger for Backup_On. It, in turn, if

successful, emits an event (ActionOK) that triggers the Backup to turn on (via the ¢ǳǊƴ ƻƴΧ button in the

Function dialog). Once the Primary is repaired, it emits a StartOperating event that becomes the

Element Action Trigger for Backup_Off. It, in turn, if successful, emits an event (ActionOK) that triggers

the Backup to turn off (via the Turn offΧ button in the Function dialog). So the annotated logical

structure looks like this:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

50

This provides a powerful, intuitive and flexible way to model standby systems (and failure on demand).

Non-Fatal Failures

Sometimes components can fail in such a way that the system still operates, but does not operate

optimally or as designed. An example of this is the failure of three state devices. Three state devices are

components that can be unfailedΣ Ŏŀƴ Ŧŀƛƭ άƻǇŜƴέ ƻǊ can fail άŎƭƻǎŜŘέ όǎƘƻǊǘŜŘύΦ

The previous discussion should provide an indication of how such a device can easily be represented in

GoldSim. An Action element would be used to represent the device (e.g., a switch or valve) that άƻǇŜƴsέ

ƻǊ άŎƭƻǎŜǎέ. Based on whether or not the Action is successful when triggered, various events are

generated (ActionOK or ActionFailed), and by appropriately responding to these events, GoldSim can

then track at any given time the state of the device.

A more interesting (and complex) example of a non-fatal failure is a case where a failure causes

degraded performance. Imagine, for example, a pump that normally pumps at a particular speed (and

hence has a particular outflow). Perhaps one of its failure modes results in the entire pump stopping.

But perhaps another failure mode may simply cause the pump to operate at a slower speed (resulting in

a lower outflow). How would we model that? We will discuss that very important topic in the next

section.

Modeling Consequences of Failure (System Performance)
In the previous sections we have provided an overview of the power and flexibility that GoldSim

provides for modeling the failure and repair of components in both simple and complex systems (and

computing reliability metrics such as reliability and availability, as well as carrying out causal analysis).

However, although these metrics and analysis can be of value and interest, what is often of greater

interest are the actual consequences of failure (e.g., changes in throughput, costs, and other measures

of system performance). That is, the entire reason we are modeling the reliability of the system in the

first place is because it performs some function (e.g., moves/processes material) , and we want to

optimize key measures of that function (e.g., the throughput of material, the unit cost of processing the

material).

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

51

This is easily facilitated within GoldSim because it is first and foremost a powerful and extremely flexible

general purpose probabilistic dynamic simulator that has been used to simulate the behavior and

evolution of a wide variety of complex systems ranging from environmental systems (e.g., mines,

watersheds, waste disposal sites) to engineered systems (e.g., processing facilities, machines, space

missions) to business systems (e.g., companies, projects). That is, GoldSim has the capability to

realistically model the performance of complex systems.

By combining these fundamental capabilities with the features we have described above (modeling the

ŦŀƛƭǳǊŜ ŀƴŘ ǊŜǇŀƛǊ ƻŦ ŜƴƎƛƴŜŜǊŜŘ ŎƻƳǇƻƴŜƴǘǎύΣ DƻƭŘ{ƛƳ ƳŀƪŜǎ ƛǘ ǇƻǎǎƛōƭŜ ǘƻ ōǳƛƭŘ άǘƻǘŀƭ ǎȅǎǘŜƳ ƳƻŘŜƭǎέ

that can represent 1) evolving environmental conditions; 2) the realistic, dynamic complexity of failure

of components within the system (e.g., complex interdependencies, failure rates that respond to

evolving environmental conditions); and 3) the actual consequences of failure (e.g., changes in

throughput, costs, and other measures of system performance).

To illustrate this in a very simple examǇƭŜΣ ƭŜǘΩǎ ŎƻƴǎƛŘŜǊ ǘƘŜ ŎŀǎŜ ƻŦ ǘƘŜ pump discussed above. We will

do this by revisiting the simple pond model that we discussed at the beginning of this paper. Recall that

water flowed into the pond, the pond leaked, and a pump removed water from the pond. The model

looked like this:

The pond had a capacity, but in our example, this was never reached. We will modify this simple model

in two ways:

1. We will assume that the pump can fail with two different failure modes:

¶ One shuts the pump down completely;

¶ One cuts the pumping rate in half (from 5 m3/day to 2.5 m3/day)

2. When the pond reaches its Capacity (175 m3), it overflows into a second pond.

We are interested in how much water overflows over the period of interest (say 1 year). That is, our

performance measure (i.e., the consequence that we are interested in) is the cumulative amount of

water that flows into the overflow pond over the year.

The new model structure to represent this looks like this:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

52

The Pump element has two failure modes defined. Both are Weibulls.

The first failure mode has a Characteristic life of 250 days and takes approximately 20 days to repair:

The second failure mode has a Characteristic life of 200 days and takes approximately 15 days to repair:

DƻƭŘ{ƛƳΩǎ !ǇǇǊƻŀŎƘ ǘƻ wŜƭƛŀōƛƭƛǘȅ aƻŘŜƭƛƴƎ

53

In addition to representing the failures and repairs, however, we want to represent the consequences of

the failures. In particular, we want to represent that fact that if the pump fails by the first mode, it is

fatal (it stops pumping completely), while if it fails by the second mode, the pumping rate is cut by half.

So how do we represent these consequences on the pumping rate?

²ŜΩǾŜ ƳŜƴǘƛƻƴŜŘ ǎŜǾŜǊŀƭ ǘƛƳŜǎ ǘƘŀǘ CǳƴŎǘƛƻƴ όŀƴŘ !Ŏǘƛƻƴύ ŜƭŜƳŜƴǘǎ ƘŀǾŜ ƳǳƭǘƛǇƭŜ ƻǳǘǇǳǘǎ ǘƘŀǘ Ŏŀƴ ōŜ

referenced (e.g., Status, StopOperating, StartOperating). Another of these outputs identifies whether or

not the component is currently failed by a particular mode. In this case, an output named

Pump.Failed[1] is true if the pump is currently failed due to the first failure mode, and false otherwise.

Similarly, an output named Pump.Failed[2] is true if the pump is currently failed due to the second

failure mode, and false otherwise. These can then be used to define the Pumping_Rate as a function of

time. The Pumping_Rate element is what is known in GoldSim as a Selector element. A Selector simply

provides a straightforward way to create nested if, then logic:

