Environmental Systems Applications

Mine Water & Waste

Mine Water Balance, Water Quality and Waste Management Modeling

Mine Water & Waste

GoldSim allows you to create realistic models of mine systems in order to carry out risk analyses, evaluate potential environmental impacts, support strategic planning, and optimize operations.

GoldSim combines the flexibility of a general-purpose and highly-graphical probabilistic simulation framework with specialized modules to support water quality modeling and reliability analysis (e.g., of pumps and other equipment). This allows you to predict future behavior, identify which factors have the greatest influence, answer "What if?" questions, and evaluate alternatives. GoldSim is not only powerful and flexible (so that it can accurately represent mine systems), but GoldSim also facilitates construction of graphical and highly transparent models that can be easily explained to decision-makers and stakeholders.

Mine Water Balance

GoldSim has been used extensively in the mining industry worldwide to address a broad range of issues, including:

  • Mine water management;
  • Contaminant transport and environmental compliance;
  • Evaluation of mine closure options;
  • Mine material management and logistics;and
  • Reliability and throughput analysis of processing facilities.

GoldSim has been used at hundreds of mine sites worldwide by the world's largest mining companies, as well as by leading consulting firms that support the mining industry.

Examples

Modules

White Papers

Technical Papers

  • Proving a New Refinery Design Using Reliability Proving a New Refinery Design Using Reliability Throughput Modelling

    2011 International Applied Reliability Symposium, North America: San Diego, California – June 7 - 9, 2011

    Damien Willans

    The design, construction and operation of large-scale resource projects are now subject to extreme levels of competition and cost, with many projects running into billions of dollars. For this reason, resource companies, bankers and every participant in the design train are now compelled to understand every aspect of risk to be undertaken, usually well before the project becomes a reality. A key element of the design process is knowing if the plant can actually produce the required output – along with a clear understanding where the areas of potential risk might be. Rather than ignoring the reality of failure effects or, more commonly, de-rating the entire design by some “accepted” operating availability number and trying to justify it, companies are now turning to plant reliability modeling up-front to prove more efficient designs, even with the uncertainties of failures well before plant startup. The concept of calculating “throughput” provides an absolute plant (design) model output for given inputs, by directly linking plant flows and consequences to the equipment availability. This presentation describes a project recently undertaken, including the project background, modeling stages and processes, and the successful outcomes provided for one client who is currently undertaking a very large-scale resource investment.

    This presentation describes how GoldSim and the Reliability Module were used to simulate the throughput of an alumina refinery, accounting for failures and preventive maintenance schemes, to support facility design.

    Download

  • Black Butte Project Water Balance

    Appendix L of the Black Butte Copper Project Mine Operating Permit Application – December 2015

    Mediha Hodzic, Knight Piesold Consulting

    The Black Butte Copper Project is a proposed underground copper mine located approximately 32 km north of White Sulphur Springs, Montana. An update to the life-of-mine site wide water balance model has been completed by Knight Piésold (KP) to incorporate the transfer of surface water from the Process Water Pond and the Cemented Tailings Facility to the Water Treatment Plant, with subsequent treatment and release to the environment. Surface water includes direct precipitation on mine facilities, as well as runoff contributing to mine facilities. This letter details the model objectives, parameters, assumptions, and results.

    The model was developed using the GoldSim© modeling platform. Deterministic and stochastic approaches were used, and 15 years were modeled including two pre-production years and 13 years of operations.

    Download

  • Yeelirrie Water Balance Study

    Report prepared for Cameco Australia Pty Ltd – June 2015

    Nazuha Rosli, URS

    This report presents the results of the Water Balance modelling for the proposed Yeelirrie Project, which supports the Public Environmental Approval (PER) submission process, aimed to validate the performance of the Project water management strategy. The water balance developed for this project was first developed using GoldSiom by URS in 2011 and has since been updated to reflect changes to the proposed mine plan.

    Download

  • Mine Water Balance Modelling for Goedehoop Colliery

    Report No.: JW191/14/D952- Rev 0 for Anglo-American Thermal Coal – October 2014

    Simphiwe Ngcobo, Jones and Wagener Engineering and Environmental Consultants

    Anglo-American Thermal Coal invited Jones & Wagener Engineering and Environmental Consultants to develop a Life of Mine water balance for the Goedehoop South Colliery in Vandyksdrift in the Mpumalanga Province. The water balance was based on relevant hydrological data and mine water management information received from the client. The data and information were compared against known estimates and logical assumptions made. The water balance modelling was performed in the GoldSim modelling environment and the results were analysed.

    Download

  • A Probabilistic Water Balance

    Thesis Paper, UMI Dissertations Publishing – 2014

    Wade, Lisa, Montana Tech of the University of Montana

    This is a Thesis, describing the research and development of a probabilistic water budget model for a mining and milling operation using GoldSim. The model incorporates climate data, well water supply, dewatering and water entrainment within a tailings storage facility. The issues revealed by the GoldSim model results were of critical importance and their identification will result in financial savings, as well as the avoidance of any emergency or crisis situations with respect to environmental management of water and tailings at the project.

    Download

  • Snap Lake Mine Site Water Quality

    Mine Water Quality Report Update – December 2013

    De Beers Canada Inc.

    A mass and flow balance model built in GoldSim was used to integrate the flow and mass loading from the components of a Mine site to develop overall estimates of water quality and mass load for the Mine site water quality. The Contaminant Transport module is used to track mass movement and develop estimates of mass load and concentrations at various points in the system.

    Download

  • Red Hill Mining Lease - EIS Water Balance Modeling

    EIS Water Balance Modeling Report, Final - Revision 0 – November 2013

    S. Buckley, Sinclair Knight Merz

    Sinclair Knight Merz (SKM) was commissioned by BHP Billiton Mitsubishi Alliance to prepare water balance modelling to support the Environmental Impact Statement (EIS) in association with the proposed Red Hill Mining Lease. The study was undertaken using a water balance model developed for the Goonyella Riverside and Broadmeadow mine complex operation using GoldSim. This study builds on the operational model to provide input to the EIS.

    Download

  • Minyango Project Environmental Impact Statement

    Water Balance Report for the Minyango Project – April 2013

    WRM Water and Environment Pty Ltd.

    WRM Water and Environment Pty Ltd was commissioned to complete a water balance assessment as part of an EIS for the Minyango Project. The water balance, which includes water supplies, demands, and storages over the life of the mine, was developed using GoldSim. The model dynamically simulates the mine operations and accounts for site water volumes and quality on a daily time step.

    Download

  • Water Balance Model for the Mt. Todd Mine Production and Closure

    Appendix 1, Surface Water Assessment prepared by GHD Australia Pty Ltd. for Vista Gold Australia Pty Ltd – May 2013

    Tetra Tech

    A GoldSim model was developed to simulate the performance of a water containment system during pre-production, production, closure and post-closure of the mine's life cycle. The water balance includes climate and runoff, site seepage and other losses, tailings reclaim water, water demands, water balance logic, water supplies and discharge to the environment. This was all simulated under varying conditions and rules as the mine facilities change during its life cycle.

    Download

  • Water Management Plan for Mangatangi Mine

    Appendix B Water Management Plan (WMP) Golder Associates (NZ) Limited – October 2012

    Golder Associates

    A GoldSim water balance and water quality model was developed by Golder Associates for the Mangatangi Mine in behalf of Glencoal Energy Limited. Stream flow depletions and potential boron concentrations were calculated on the basis of the water flow and contaminant mass balances performed in the model.

    Download

  • Mine Water Management from Pre-feasibility to Closure

    Mine Water Management and Treatment, Kuopio, Finland – September 2013

    Seth Mueller, Boliden Mineral AB

    A mine water management plan was developed to assist with regulatory permitting and planning for a mine in Finland. GoldSim was used to simulate the water management from pre-feasibility through closure. The model accounts for pre and post mining conditions, various water demands and recycling, extreme climate events, and impacts on water quality. The model takes advantage of GoldSim's powerful dynamic and probabilistic functionality to optimize mine operations under uncertain conditions.

    Download

  • Use of an Integrated Source-to-Receptor Model to Faciliate Rapid Assessment of Water Quality Impacts During Mine Planning

    Reliable Mine Water Technology, IMWA; Golden CO USA – 2013

    Tina Pint, Peter Hinck, Barr Engineering Company

    An integrated source-to-receptor model for assessing potential project-wide water impacts can save time and money by facilitating rapid evaluation of multiple design options. GoldSim was used to develop an integrated source-to-receptor model for a mine site in northern Minnesota and used to evaluate various mine closure options during the mine planning process.

    Download

  • Mine Water Quality Predictions Model

    Project Report, Casino Mining Corporation – December 2013

    Source Environmental Associates, Inc.

    A site-wide water quality model was developed for a proposed Mining Project. The model simulates water quality in the mine discharge and receiving environment. The water quality model is also used as a planning tool to help select water quality mitigations. The water quality model was built within the GoldSim modelling platform, and was run for a simulation timeline of 200 years and includes 29 water quality parameters.

    Download

  • Mine Water Quality Model

    Quality Assurance Technical Memorandum, Environmental Resources Management – February 2013

    Barr Engineering Company

    A technical memorandum (link below) summarizes a series of Quality Assurance (QA) evaluations that were performed on two water quality models used to estimate environmental impacts associated with a proposed mining project. The two models, one for a mine site and one for a plant site, were programmed using GoldSim. The models were developed by Barr Engineering Company (Barr) to estimate potential effects from the proposed mine on the quality and quantity of water resources.

    Download

  • Waste Discharge Charge System: The Practical Implication from a Gold Mining Perspecitve

    Mini-dissertation, North-West University – October 2012

    K.C. de Waard, J.H. Stander, Potchefstroom Campus of North-West University

    A case study was used to determine what information and instruments will be required at a gold mine to implement the Waste Discharge Charge System (WDCS). The determining of the point and diffuse discharges require multidisciplinary studies with the integration of different spheres of the environment. To assist with this a GoldSim model was developed. The main function of the model was to determine the seepage rates per day from pollution sources using available information. The seepage rates and water quality data were used to determine waste loads discharged to the environment.

    Download

  • Geochemical Pit Lake Predictive Model

    Report for Rosemont Copper Project, Revision 1 – November 2010

    Tetra Tech

    A dynamic systems computer model (DSM) was developed in GoldSim to simulate the hydrologic water balance and the mixing of the chemical loads from the various hydrologic processes (e.g., groundwater inflow, pit wall runoff, precipitation) for the anticipated Rosemont pit lake. Outputs from the DSM predictive simulations were used as inputs to a final simulation model step using PHREEQC.

    Download

  • Water Balance for a TSF Using GoldSim

    Tailings and Heap Leach Pad Workshop – April 2010

    SRK Consulting

    This presentation summarizes the benefits of using GoldSim for a waste and tailings water balance for the Mount Carlton mine. Some benefits of using GoldSim over a Spreadsheet are noted: GoldSim better facilitates handling of complex climatic data, saves significant model runtime to view multiple scenarios, better estimates water volumes in dry seasons, easier to run optimizations.

    Download

  • Linking Fundamental Geochemistry and Empirical Observations for Water Quality Predictions Using GoldSim

    Mine Water and Innovative Thinking, IMWA, Wolkersdorfer. Ch. and Freund, A., p 313-316, Sydney, Nova Scotia, Canada – 2010

    Brent Usher, Roald Strand, Chris Strachotta and Jim Jackson

    Prediction of water quality across different components of a mine site is often a challenging proposition, due to both the technical challenges of water quality modelling and the variability of available data. A methodology of integrating site-specific mine waste characterization results and minewater balances through the use of fundamental considerations and empirically-derived constraints to predict water quality from mine waste sources has been developed. The adoption of GoldSim as visual interface software with capacity for matrix calculations has facilitated the development of linked water quality sub-models for different mine facilities. Fundamental and observed geochemical responses from on-site monitoring, field kinetic tests and laboratory data have been incorporated with Phreeqc and geochemists Workbench modelling to identify the most important geochemical processes across the mine site. Based on the static geochemical data to populate the models, the determined geochemical generation rates, the site specific geochemical properties and the mine-site water balance, the GoldSim platform has been used to realise the conceptual understanding of each aspect and construct a framework to provide mine scale water quality projections. In this way, models have been built to assist in a range of situations from a large operating poly-metallic open cut mine to assess mine waste and mine water management alternatives to determination of likely water quality at a proposed large mine in a tropical environment.

    Download

  • Modelling of Contaminant Release from a Uranium Mine Tailings Site

    Proceedings of the 11th International Conference on Environmental Remediation and Radioactive Waste Management (ICEM) – September 2007

    R. Kahnt and T. Metschies

    Uranium mining and milling continuing from the early 1960s until 1990 close to the town of Seelingstädt in Eastern Germany resulted in 4 large tailings impoundments. Leakage from these tailings impoundments enters the underlying aquifers and is discharged into surface water streams. High concentration of salts, uranium and several heavy metals are released from the tailings. A compartment model representing the tailings impoundments and the surrounding aquifers for the calculation of contaminant release and transport was set up using GoldSim. This compartment model describes the time dependent hydraulic conditions within the tailings and the surrounding aquifers taking into account hydraulic and geotechnical processes influencing the hydraulic properties of the tailings material. A simple geochemical approach taking into account sorption processes as well as retardation by applying a kd-approach was also implemented. The model was used to predict the effect of various remediation scenarios in a fast and traceable way.

    Download

  • Mine Water Management – Dynamic, Probabilistic Modelling Approach

    10th International Mine Water Association Congress – June 2008

    Przemek Nalecki and Mike Gowan, Golder Associates

    This paper presents a holistic approach to mine water management. The proposed approach provides a framework and methodology for integrating different components of mine water infrastructure by explicitly representing the relationships, feedback mechanisms and uncertainties about the conditions and processes involved, using a dynamic, probabilistic simulation method.

    Download

  • Development and Operation of a Water Balance at Rio Paracatu Mineracao, Brazil

    Proceedings of the 7th International Conference on Acid Rock Drainage (ICARD), St. Louis, MO – March 2006

    Tobias Puhlmann, Juliana Esper, and Rodrigo Dutra Amaral, Kinross Gold Corporation; Charles Voss, Golder Associates

    This paper describes a site wide water model of the Rio Paracatu Mineração that was developed to a) evaluate ways to optimize the operation of the existing water management system and b) evaluate alternative water infrastructure and water supply options that would meet the requirements of future mine expansions.

    Download

  • Peruvian Mine Operation Using Dynamic System Modeling

    Southwest Hydrology – July/August 2006

    Charlie Voss, Golder Associates; Henri Letient, Compania Minera Antamina S.A.

    This article describes the GoldSim model of the Antamina mine that was created to allow different water management strategies to be evaluated to ensure that they would meet regulatory constraints

    Download

  • Applying Numerical Hydrochemical Models as Decision Support Tools for Mine Closure Planning

    Presentation at Tailings and Mine Waste '08, Vail, CO – October 2008

    Ted Eary, Jody Eshleman, Ryan Jakubowski and Andrew Watson, MWH

    This presentation describes the use of decision-support models for evaluating closure alternatives for pit lakes.

    Download

  • Site-Wide Water Balance of the Pierina Gold Mine, Peru

    Presentation – 2008

    Liane George, William Ludwick and John Chahbandour, Schlumberger Water Services

    This presentation describes a site-wide water balance model for the Pierina Gold Mine in Peru that was designed to ensure compliance with environmental regulations.

    Download

  • Rehabilitation of Meirama Pit Lake

    Proceedings of the 9th International Mine Water Conference, Oviedo, Spain – February 2012

    Juan Luis Delgado, Lignitos de Meirama, SA

    This paper describes a model built to evaluate closure options for a coal mine, taking into account possible water quality issues.

    Download

  • Simulating the Effectiveness of Remedial Measures at a Coal Mine (New Zealand)

    Proceedings of the 2006 Water in Mining Conference – November 2006

    Jan Vermaak and Paul Lindsay, Golder Associates

    This paper describes a GoldSim model that was developed to simulate the effectiveness and costs of a number of conceptual remedial measures aimed at reducing acidity and metal concentrations in the Ngakawau River and its tributaries near the Stockton Coal Mine, situated on the West Coast of New Zealand.

    Download

  • Probabilistic Modeling for Tailings Remediation and Restoration

    Mine Water – Managing the Challenges, IMWA; Aachen, Germany – 2011

    Gareth Digges La Touche, Helen Culshaw, Richard Lansley, Golder Associates (UK) Ltd

    Tailings Management Facilities represent a hazard to the down gradient surface water and groundwater environment. The assessment of the risks such facilities pose to the water environment is an important issue for mine closure, particularly when the potential for an impact on the water environment has been identified. This paper will describe the application of probabilistic simulation in quantitative analytical models to assess the risks where confidence in modelled outcomes may otherwise be inhibited due to limited environmental data. The application of probabilistic modelling will be illustrated through case studies illustrating the use of probabilistic risk assessment to appraise differing closure and remediation strategies for a tailings management facility and the use of such tools to quantify the level of uncertainty in the assessment of risk.

    Download