Environmental Systems Applications

Energy

Probabilistic Risk Analysis in the Energy Industry

Energy

Development and operation of oil and gas production facilities requires an enormous investment of time, money, and technology. Given the nature of the industry, there are a large number of uncertainties (technological, economic and political) that are inherently present. As a result, critical investment decisions are often made based on sparse and uncertain data and qualitative analysis. Probabilistic risk assessment and analysis using GoldSim simulation software can facilitate better planning and risk management in the face of these uncertainties.

By creating a quantitative framework that explicitly accounts for uncertainties and also represents complex dynamics (something that cannot be realistically done in spreadsheet models), GoldSim can be used to identify and quantitatively compare alternatives. Large capital investments, long lead times against uncertain revenues, uncertainty of yield size and production, and market and political risks beyond company control are all harrowing challenges that make probabilistic simulation a valuable tool for the oil and gas industry.

model

Examples

Modules

White Papers

Technical Papers

  • Development of an Execution Strategy Analysis Capability and Tool for Storage of Used Nuclear Fuel

    Publication for the International Atomic Energy Agency, IAEA-CN-226-34 – June 2015

    R. Stoll1, J. Greeves1, and J. Voss with Predicus LLC, USA; A. Keizur and A. Neir with Golder Associates Inc., USA; N. Saraeva and W. Nutt with Argonne National Laboratory, USA

    An Execution Strategy Analysis (ESA) capability and tool is being developed to evaluate alternative execution strategies for future deployment of a consolidated Interim Storage Facility (ISF) using a consent-based siting process per the Administration’s Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Application of an ESA approach not only leverages on but also goes beyond traditional project analysis tools. The ESA tool allows for on-going performance assessment of the evolving project execution plan that takes into account significant assumptions, risks, and uncertainties throughout the project lifecycle. The ESA process and tool are used to support the development of plans, budgets, and alternative execution/ implementation strategies for meeting the goals in the Strategy. The project is being applied in a dynamic probabilistic simulation model using GoldSim.

    Download

  • Cost-Benefit Analysis of Policies for the Development of Electric Vehicles in Germany: Methods and Results

    Ca' Foscari University of Venice, Department of Economics Working Paper, ISSN: 1827/3580 No. 02/WP/2013 – 2013

    Jerome Massiani with Universita Ca' Foscari di Venezia and Jorg Radeke of Berlin Economics GmbH

    Policies toward the diffusion of Electric Vehicles (EV) received a lot of attention in recent years in many developed countries. In this paper, we review different existing models and present a simulation tool for the assessment of EV policies in Germany. This model, which was built in GoldSim incorporates detailed representation of the various technological, behavioral and economical mechanisms that govern the possible diffusion of EV in Germany.

    Download

  • Water Production Tool for Coal Seam Gas

    Enhancement of the Coal Seam Gas Water Production Tool, Deliverable 4: Addendum to Technical Report – March 2013

    Greg Keir, Lucy Reading, Sue Vink

    A water production tool was developed by Klohn Crippen Berger using GoldSim to predict the potential volumes of water extracted by the coal seam gas industry within the Bowen and Surat Basins in Queensland over the next 50 years.

    Download

  • A System Model for Geologic Sequestration of Carbon Dioxide

    Article in Environmental Science and Technology, Volume 43, Number 3, pgs. 565-570 – December 2008

    Philip Stauffer, Hari Viswanathan, Rajesh Pawar and George Guthrie, Los Alamos National Laboratory

    This article describes the CO2-PENS model developed to simulate capture, transport and injection in different geological reservoirs.

    Reference

    Read Paper

  • Simulation Model of Pumped Hydroelectric Power Plant

    Acta Electrotechnica et Informatica, Vol. 15, No. 2, 2015, 57–61, DOI: 10.15546/aeei-2015-0019 – 2015

    Miroslav Mikita, Michael Kolcun; Department of Electric Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Kosice, Letna 9, 042 00 Kosice, Slovak Republic

    The Pumped hydroelectric power plants are very suitable way to avoid the unpredictable imbalance in power generation, but its construction is very expensive and reliability is very long-term. Every single pumped hydroelectric power plant is like rechargeable battery which can generate electricity when there is a deficiency in power generation and also can consume when there is conversely reserve on power generation. That's the main reason why is important to build such sources of energy. When you create new project of every power plant that prediction of it's performance is highly important and simulation software is useful in this cases. For good prediction is also important true data in simulation and knowledge about locality of this project, because every project varies from other similar projects. For obtaining optimal conditions of using pumped hydroelectric power plant is needed to find best algorithm of generating or consuming the electricity. GoldSim was used to develop this pumped storage model.

    Download

  • The CO2-PENS Water Treatment Model: Evaluation of Cost Profiles and Importance Scenarios for Brackish Water Extracted During Carbon Storage.

    Journal article, Energy Procedia 63, 7205–7214 – 2014

    Sullivan Graham, E.Ja, Chu, S., Pawar, R.J., Stauffer, P.H. with Los Alamos National Laboratory

    Extraction of in-situ water is one of the options for minimizing the impact of large-scale CO2 injection in saline aquifers or during enhanced oil recovery (EOR). The amount of water to be produced could be significant depending on in-situ conditions and injection parameters. Evaluating the costs of treatment is complex, as the quality of the water may vary considerably from treatments based on well-known seawater chemistry, including reverse osmosis. We evaluated a brackish-salinity water to be extracted from a future CO2 injection and storage location in eastern China for prototype treatment costs for both cooling water and boiler water final treatment goals. Costs for treatment of the water, excluding costs for organic pretreatment, were within the range of previously analyzed costs for higher-salinity waters but are likely to be lower when economies of scale are included for a full-scale, higher volume treatment facility. Importance analysis lends insight into process factors that may not contribute the highest unit costs to treatment but on whole are very important to total system costs. We found that the acid rate for pretreatment, zero-liquid discharge disposal, feed water temperature, and water transportation costs, were the most important factors within total system costs for this analysis. The CO2-PENS Water Treatment Model was developed using GoldSim.

    Download

  • A Method and Cost Model for Treatment of Water Extracted During Geologic CO2 Storage

    Journal article for the International Journal of Greenhouse Gas Control – December 2013

    Enid Sullivan, Shaoping Chu, Philip Stauffer, Richard Middleton, and Rajesh Pawar with Los Alamos National Laboratory

    Extraction of water as a part of CO2 storage may be desirable for risk management and process optimization. Treatment and repurposing of this water creates a useful resource and reduces the volumes that must otherwise be disposed. To better understand the tradeoff of costs versus processes and risks, we use a systems approach to evaluate treatment costs that are reasonable for the chemical and physical qualities (salinity, temperature, pH and turbidity) of water that could be extracted from target geologic formations. We evaluate primary and secondary pretreatments, membrane desalination processes (reverse osmosis and nanofiltration), thermal processes (multiple effect distillation and multi-stage flash distillation), and several concentrate (brine) disposal methods. The system model was developed in GoldSim. The results indicate that for waters extracted from storage sites, salinities and temperatures may often be higher than for municipal treatment scenarios. Thus, thermal treatment methods are more cost-feasible than membrane methods in many cases, although pressure recovery methods for reverse osmosis can mitigate this. Treatment costs including concentrate disposal fall within a range of US$0.50–2.50/ton CO2 injected, although some costs can be much higher (up to US$30/ton CO2 under certain concentrate disposal cost ranges). A sensitivity analysis shows that temperature is the most important in determining costs followed by selection of concentrate disposal method.

    Download

  • Forecasting Coal Seam Gas Water Production in Queensland's Surat and Southern Bowen Basins

    Technical Report, Prepared for the State of Queensland (Department of Natural Resources and Mines) – September 2012

    Klohn Crippen Berger

    A basin-wide model was built to help forecast produced water from coal seam gas (CSG) operations in Queensland, Australia. This report describes how the tool works and reports a summary of findings for the forecast period of 2010-2060.The Water Production Tool (WPT) required a robust software platform to accommodate both quantitative inputs and inferred relationships. The platform needed to be flexible, transparent and represent the processes inherent in the system with appropriate recognition of uncertainty in all of the variables. The platform selected for the WPT was GoldSim, which permitted construction of a multi-tiered, practical and modifiable tool, with the additional option of stochastic (Monte Carlo) modelling.

    Download

  • A CO2-PENS Model of Methods and Costs for Treatment of Water Extracted During Geologic Carbon Sequestration

    International Journal of Greenhouse Gas Control – December 2012

    Enid Sullivan, Shaoping Chu, Philip Stauffer, and Rajesh Pawar with Los Alamos National Laboratory

    Extraction of water during subsurface carbon sequestration may be useful for the control of CO2 placement, reducing pressure risks, and mitigating environmental risks. Desalination of this water may be possible if costs are kept low, in order to minimize the quantity that must be reinjected or otherwise disposed. Added value may be recovered in the form of treated water that can be reused by carbon capture, sequestration, and other industrial processes. Total dissolved solids will range from 10,000mg/L up to over 100,000 mg/L, and temperatures may range up to 120°C, once the water is brought to the surface. We have developed a system-level, mesoscale analysis module for the CO2-Predicting engineered natural system model to analyze the feasibility of treatment, the costs of treatment, the value of energy recovery, and the costs of concentrate disposal. Costs are derived from a database of reported literature values. The model, developed in GoldSim, allows the user to select the most economic options for treatment, to compare costs, and to understand the trade-off of risks and costs. Results of preliminary modeling indicate that while reverse osmosis is feasible within certain temperature and salinity ranges, nanofiltration and thermal methods may be more cost-effective or otherwise feasible.

    Download

  • Investigations on Atmospheric CO2 Impacts of the Energetic Use of Biomass by Global Carbon Cycle Models

    17th International Drying Symposium (IDS 2010), Magdeburg, Germany – October 2010

    Ringer, D.U., Hochschule Furtwangen University

    Energy intensive activities such as drying are in the focus of attention of CO2-reduction schemes. Origin and quality of the energy used are key issues for the development of the atmospheric CO2-content. Biomass as energy source is discussed as a possi-bility to reduce atmospheric CO2. However, the line of logic comes from simple static balances. Yet, CO2 is part of the Global Carbon Cycle which is a large, global, dynamic network. A simple but globally accurate dynamic model of this cycle was built using GoldSim, which develops scenarios to look at the biomass arguments from a dynamic point of view.

    Download

  • Uncertainty Analysis for Unprotected Loss-of-Heat-Sink, Loss-of-Flow, and Transient-Overpower Events in Sodium-Cooled Fast Reactors

    International Conference on Fast Reactors and Related Fuel Cycles (FR 2009), Kyoto, Japan – December 2009

    Morris, E. E. and Nutt, W. M., Argonne National Laboratory

    While the traditional approach to reactor safety analyses remain deterministic, this paper considers a stochastic approach for explicitly including uncertainty in safety parameters by applying Monte Carlo sampling coupled with established deterministic reactor safety analysis tools.

    Download

  • Modeling of Coal Combustion Products (CCP) Management Options at a Coal-fired Power Plant

    Proceedings of the 2003 International Ash Utilization Symposium – April 2005

    Todd Stong and Ron Jorgenson, Golder Associates; Russ Nelson and Tony Stroh, Great River Energy

    This paper describes a model built to evaluate management plans for coal combustion process in light of market conditions and pending EPA regulations.

    Download

Learn More